High efficient multipartite entanglement purification using hyperentanglement


Abstract in English

Multipartite entanglement plays an important role in controlled quantum teleportation, quantum secret sharing, quantum metrology and some other important quantum information branches. However, the maximally multipartite entangled state will degrade into the mixed state because of the noise. We present an efficient multipartite entanglement purification protocol (EPP) which can distill the high quality entangled states from low quality entangled states for N-photon systems in a Greenberger-Horne-Zeilinger (GHZ) state in only linear optics. After performing the protocol, the spatial-mode entanglement is used to purify the polarization entanglement and one pair of high quality polarization entangled state will be obtained. This EPP has several advantages. Firstly, with the same purification success probability, this EPP only requires one pair of multipartite GHZ state, while existing EPPs usually require two pairs of multipartite GHZ state. Secondly, if consider the practical transmission and detector efficiency, this EPP may be extremely useful for the ratio of purification efficiency is increased rapidly with both the number of photons and the transmission distance. Thirdly, this protocol requires linear optics and does not add additional measurement operations, so that it is feasible for experiment. All these advantages will make this protocol have potential application for future quantum information processing.

Download