Do you want to publish a course? Click here

Effect of substituting non-polar chains with polar chains on the structural dynamics of small organic molecule and polymer semiconductors

74   0   0.0 ( 0 )
 Added by Mohamed Zbiri
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The processability and optoelectronic properties of organic semiconductors can be tuned and manipulated via chemical design. The substitution of the alkyl side chains by oligoethers has recently been successful for applications such as bioelectronic sensors and photocatalytic water-splitting. The carbon-oxygen bond in oligoethers is likely to render the system softer and more prone to dynamical disorder that can be detrimental to charge transport for example. We use neutron spectroscopy, X-Ray diffraction (XRD), differential scanning calorimetry (DSC) and polarized optical microscopy to study the effect of the substitution of n-hexyl (Hex) by triethylene glycol (TEG) on the structural dynamics of two organic semiconductors: a phenylene-bithiophene-phenylene (PTTP) molecule and a fluorene-co-dibenzothiophene (FS) polymer. Counterintuitively, inelastic neutron scattering (INS) reveals a softening of the modes of PTTP and FS with Hex side chains, pointing towards an increased dynamical disorder in these systems. However, T-dependent X-Ray and neutron diffraction, INS and DSC evidence an extra reversible transition close to room temperature (RT) for PTTP with TEG side chains. The observed transition, not accompanied by a change in birefringence, can also be observed by quasi-elastic neutron scattering. A fastening of the TEG side chains dynamics is observed in the case of PTTP and not FS. We therefore assign this transition to the melt of the TEG side chains which are promoting dynamical order at RT, but if crystallising, may introduce an extra reversible structural transition above RT leading to thermal instabilities. A deeper understanding of side chain polarity and structural dynamics can help guide materials design and navigate the intricate balance between electronic charge transport and aqueous swelling, sought for a number of emerging organic electronic and bioelectronic applications.



rate research

Read More

We develop two new amphiphilic molecules that are shown to act as efficient surfactants for carbon nanotubes in non-polar organic solvents. The active conjugated groups, which are highly attracted to graphene nanotube surface, are based on pyrene and porphyrin. We show that relatively short (C18) carbon tails are insufficient to provide stabilization. As our ultimate aim is to disperse and stabilize nanotubes in siloxane matrix (polymer and crosslinked elastomer), both surfactant molecules were made with long siloxane tails to facilitate solubility and steric stabilization. We show that pyrene-siloxane surfactant is very effective in dispersing multi-wall nanotubes, while the porphyrin-siloxane is making single-wall nanotubes soluble, both in petroleum ether and in siloxane matrix.
Amorphous organic semiconductors based on small molecules and polymers are used in many applications, most prominently organic light emitting diodes (OLEDs) and organic solar cells. Impurities and charge traps are omnipresent in most currently available organic semiconductors and limit charge transport and thus device efficiency. The microscopic cause as well as the chemical nature of these traps are presently not well understood. Using a multiscale model we characterize the influence of impurities on the density of states and charge transport in small-molecule amorphous organic semiconductors. We use the model to quantitatively describe the influence of water molecules and water-oxygen complexes on the electron and hole mobilities. These species are seen to impact the shape of the density of states and to act as explicit charge traps within the energy gap. Our results show that trap states introduced by molecular oxygen can be deep enough to limit the electron mobility in widely used materials.
110 - J. Sjakste , N. Vast , M. Calandra 2015
We generalize the Wannier interpolation of the electron-phonon matrix elements to the case of polar-optical coupling in polar semiconductors. We verify our methodological developments against experiments, by calculating the widths of the electronic bands due to electron-phonon scattering in GaAs, the prototype polar semiconductor. The calculated widths are then used to estimate the broadenings of excitons at critical points in GaAs and the electron-phonon relaxation times of hot electrons. Our findings are in good agreement with available experimental data. Finally, we demonstrate that while the Frohlich interaction is the dominant scattering process for electrons/holes close to the valley minima, in agreement with low-field transport results, at higher energies, the intervalley scattering dominates the relaxation dynamics of hot electrons or holes. The capability of interpolating the polar-optical coupling opens new perspectives in the calculation of optical absorption and transport properties in semiconductors and thermoelectrics.
We combine infrared spectroscopy, nano-indentation measurements, and emph{ab initio} simulations to study the evolution of structural, elastic, thermal, and electronic responses of the metal organic framework MOF-74-Zn when loaded with H$_2$, CO$_2$, CH$_4$, and H$_2$O. We find that the molecular adsorption in this MOF triggers remarkable responses in all of these properties of the host material, with specific signatures for each of the guest molecules. With this comprehensive study we are able to clarify and correlate the underlying mechanisms regulating these responses with changes of the physical and chemical environment. Our findings suggest that metal organic framework materials in general, and MOF-74-Zn in particular, can be very promising materials for novel transducers and sensor applications, including highly selective small-molecule detection in gas mixtures.
LiOsO$_3$ undergoes a continuous transition from a centrosymmetric $Rbar{3}c$ structure to a polar $R3c$ structure at $T_s=140$~K. By combining transport measurements and first-principles calculations, we find that $T_s$ is enhanced by applied pressure, and it reaches a value of $sim$250~K at $sim$6.5~GPa. The enhancement is due to the fact that the polar $R3c$ structure of LiOsO$_3$ has a smaller volume than the centrosymmetric $Rbar{3}c$ structure. Pressure generically favors the structure with the smallest volume, and therefore further stabilizes the polar $R3c$ structure over the $Rbar{3}c$ structure, leading to the increase in $T_s$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا