Do you want to publish a course? Click here

Using Pantheon and DES supernova, baryon acoustic oscillation, and Hubble parameter data to constrain the Hubble constant, dark energy dynamics, and spatial curvature

147   0   0.0 ( 0 )
 Added by Shulei Cao
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use Pantheon Type Ia supernova (SN Ia) apparent magnitude, DES-3yr binned SN Ia apparent magnitude, Hubble parameter, and baryon acoustic oscillation measurements to constrain six spatially flat and non-flat cosmological models. These sets of data provide mutually consistent cosmological constraints in the six cosmological models we study. A joint analysis of these data sets provides model-independent estimates of the Hubble constant, $H_0=68.8pm1.8 rm{km s^{-1} Mpc^{-1}}$, and the non-relativistic matter density parameter, $Omega_{rm m_0}=0.294pm0.020$. Although the joint constraints prefer mild dark energy dynamics and a little spatial curvature, they do not rule out dark energy being a cosmological constant and flat spatial hypersurfaces. We also add quasar angular size and H II starburst galaxy measurements to the combined data set and find more restrictive constraints.



rate research

Read More

In the paper, we consider two models in which dark energy is coupled with either dust matter or dark matter, and discuss the conditions that allow more time for structure formation to take place at high redshifts. These models are expected to have a larger age of the universe than that of $Lambda$CDM [universe consists of cold dark matter (CDM) and dark energy (a cosmological constant, $Lambda$)], so it can explain the formation of high redshift gravitationally bound systems which the $Lambda$CDM model cannot interpret. We use the observational Hubble parameter data (OHD) and Hubble parameter obtained from cosmic chronometers method ($H(z)$) in combination with baryon acoustic oscillation (BAO) data to constrain these models. With the best-fitting parameters, we discuss how the age, the deceleration parameter, and the energy density parameters evolve in the new universes, and compare them with that of $Lambda$CDM.
We use the Risaliti & Lusso (2015) compilation of 808 X-ray and UV flux measurements of quasars (QSOs) in the redshift range $0.061 leq z leq 6.28$, alone and in conjuction with baryon acoustic oscillation (BAO) and Hubble parameter [$H(z)$] measurements, to constrain cosmological parameters in six cosmological models. The QSO data constraints are significantly weaker than, but consistent with, those from the $H(z)$ + BAO data. A joint analysis of the QSO + $H(z)$ + BAO data is consistent with the current standard model, spatially-flat $Lambda$CDM, but mildly favors closed spatial hypersurfaces and dynamical dark energy.
Holographic dark energy (HDE) describes the vacuum energy in a cosmic IR region whose total energy saturates the limit of avoiding the collapse into a black hole. HDE predicts that the dark energy equation of the state transiting from greater than the $-1$ regime to less than $-1$, accelerating the Universe slower at the early stage and faster at the late stage. We propose the HDE as a new {it physical} resolution to the Hubble constant discrepancy between the cosmic microwave background (CMB) and local measurements. With Planck CMB and galaxy baryon acoustic oscillation (BAO) data, we fit the HDE prediction of the Hubble constant as $H_0^{}!=, 71.54pm1.78,mathrm{km,s^{-1} Mpc^{-1}}$, consistent with local $H_0^{}$ measurements by LMC Cepheid Standards (R19) at $1.4sigma$ level. Combining Planck+BAO+R19, we find the HDE parameter $c=0.51pm0.02$ and $H_0^{}! = 73.12pm 1.14,mathrm{km ,s^{-1} Mpc^{-1}}$, which fits cosmological data at all redshifts. Future CMB and large-scale structure surveys will further test the holographic scenario.
We investigate a generalized form of the phenomenologically emergent dark energy model, known as generalized emergent dark energy (GEDE), introduced by Li and Shafieloo [Astrophys. J. {bf 902}, 58 (2020)] in light of a series of cosmological probes and considering the evolution of the model at the level of linear perturbations. This model introduces a free parameter $Delta$ that can discriminate between the $Lambda$CDM (corresponds to $Delta=0$) or the phenomenologically emergent dark energy (PEDE) (corresponds to $Delta=1$) models, allowing us to determine which model is preferred most by the fit of the observational datasets. We find evidence in favor of the GEDE model for Planck alone and in combination with R19, while the Bayesian model comparison is inconclusive when Supernovae Type Ia or BAO data are included. In particular, we find that $Lambda$CDM model is disfavored at more than $2sigma$ CL for most of the observational datasets considered in this work and PEDE is in agreement with Planck 2018+BAO+R19 combination within $1sigma$ CL.
We investigate constraints on the Hubble constant ($H_0$) using Baryon Acoustic Oscillations (BAO) and baryon density measurements from Big Bang Nucleosynthesis (BBN). We start by investigating the tension between galaxy BAO measurements and those using the Lyman-$alpha$ forest, within a Bayesian framework. Using the latest results from eBOSS DR14 we find that the probability of this tension being statistical is $simeq6.3%$ assuming flat $Lambda$CDM. We measure $H_0 = 67.6pm1.1$ km s$^{-1}$ Mpc$^{-1}$, with a weak dependence on the BBN prior used, in agreement with results from Planck Cosmic Microwave Background (CMB) results and in strong tension with distance ladder results. Finally, we forecast the future of BAO $+$ BBN measurements of $H_0$, using the Dark Energy Spectroscopic Instrument (DESI). We find that the choice of BBN prior will have a significant impact when considering future BAO measurements from DESI.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا