Do you want to publish a course? Click here

Perturbative and Nonperturbative Studies of CFTs with MN Global Symmetry

74   0   0.0 ( 0 )
 Added by Andreas Stergiou
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fixed points in three dimensions described by conformal field theories with $MN_{m,n}= O(m)^nrtimes S_n$ global symmetry have extensive applications in critical phenomena. Associated experimental data for $m=n=2$ suggest the existence of two non-trivial fixed points, while the $varepsilon$ expansion predicts only one, resulting in a puzzling state of affairs. A recent numerical conformal bootstrap study has found two kinks for small values of the parameters $m$ and $n$, with critical exponents in good agreement with experimental determinations in the $m=n=2$ case. In this paper we investigate the fate of the corresponding fixed points as we vary the parameters $m$ and $n$. We find that one family of kinks approaches a perturbative limit as $m$ increases, and using large spin perturbation theory we construct a large $m$ expansion that fits well with the numerical data. This new expansion, akin to the large $N$ expansion of critical $O(N)$ models, is compatible with the fixed point found in the $varepsilon$ expansion. For the other family of kinks, we find that it persists only for $n=2$, where for large $m$ it approaches a non-perturbative limit with $Delta_phiapprox 0.75$. We investigate the spectrum in the case $MN_{100,2}$ and find consistency with expectations from the lightcone bootstrap.



rate research

Read More

Motivated by applications to critical phenomena and open theoretical questions, we study conformal field theories with $O(m)times O(n)$ global symmetry in $d=3$ spacetime dimensions. We use both analytic and numerical bootstrap techniques. Using the analytic bootstrap, we calculate anomalous dimensions and OPE coefficients as power series in $varepsilon=4-d$ and in $1/n$, with a method that generalizes to arbitrary global symmetry. Whenever comparison is possible, our results agree with earlier results obtained with diagrammatic methods in the literature. Using the numerical bootstrap, we obtain a wide variety of operator dimension bounds, and we find several islands (isolated allowed regions) in parameter space for $O(2)times O(n)$ theories for various values of $n$. Some of these islands can be attributed to fixed points predicted by perturbative methods like the $varepsilon$ and large-$n$ expansions, while others appear to arise due to fixed points that have been claimed to exist in resummations of perturbative beta functions.
We study the time evolution of Renyi entanglement entropy for locally excited states in two dimensional large central charge CFTs. It generically shows a logarithmical growth and we compute the coefficient of $log t$ term. Our analysis covers the entire parameter regions with respect to the replica number $n$ and the conformal dimension $h_O$ of the primary operator which creates the excitation. We numerically analyse relevant vacuum conformal blocks by using Zamolodchikovs recursion relation. We find that the behavior of the conformal blocks in two dimensional CFTs with a central charge $c$, drastically changes when the dimensions of external primary states reach the value $c/32$. In particular, when $h_Ogeq c/32$ and $ngeq 2$, we find a new universal formula $Delta S^{(n)}_Asimeq frac{nc}{24(n-1)}log t$. Our numerical results also confirm existing analytical results using the HHLL approximation.
256 - Ryan Thorngren , Yifan Wang 2021
We study generalized symmetries of quantum field theories in 1+1D generated by topological defect lines with no inverse. This paper follows our companion paper on gapped phases and anomalies associated with these symmetries. In the present work we focus on identifying fusion category symmetries, using both specialized 1+1D methods such as the modular bootstrap and (rational) conformal field theory (CFT), as well as general methods based on gauging finite symmetries, that extend to all dimensions. We apply these methods to $c = 1$ CFTs and uncover a rich structure. We find that even those $c = 1$ CFTs with only finite group-like symmetries can have continuous fusion category symmetries, and prove a Noether theorem that relates such symmetries in general to non-local conserved currents. We also use these symmetries to derive new constraints on RG flows between 1+1D CFTs.
153 - Andrea Manenti 2019
We study some aspects of conformal field theories at finite temperature in momentum space. We provide a formula for the Fourier transform of a thermal conformal block and study its analytic properties. In particular we show that the Fourier transform vanishes when the conformal dimension and spin are those of a double twist operator $Delta = 2Delta_phi + ell + 2n$. By analytically continuing to Lorentzian signature we show that the spectral density at high spatial momenta has support on the spectrum condition $|omega| > |k|$. This leads to a series of sum rules. Finally, we explicitly match the thermal block expansion with the momentum space Greens function at finite temperature in several examples.
We develop the analytic bootstrap in several directions. First, we discuss the appearance of nonperturbative effects in the Lorentzian inversion formula, which are exponentially suppressed at large spin but important at finite spin. We show that these effects are important for precision applications of the analytic bootstrap in the context of the 3d Ising and O(2) models. In the former they allow us to reproduce the spin-2 stress tensor with error at the $10^{-5}$ level while in the latter requiring that we reproduce the stress tensor allows us to predict the coupling to the leading charge-2 operator. We also extend perturbative calculations in the lightcone bootstrap to fermion 4-point functions in 3d, predicting the leading and subleading asymptotic behavior for the double-twist operators built out of two fermions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا