Do you want to publish a course? Click here

Variational quantum solver employing the PDS energy functional

61   0   0.0 ( 0 )
 Added by Bo Peng
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently a new class of quantum algorithms that are based on the quantum computation of the connected moment expansion has been reported to find the ground and excited state energies. In particular, the Peeters-Devreese-Soldatov (PDS) formulation is found variational and bearing the potential for further combining with the existing variational quantum infrastructure. Here we find that the PDS formulation can be considered as a new energy functional of which the PDS energy gradient can be employed in a conventional variational quantum solver. In comparison with the usual variational quantum eigensolver (VQE) and the original static PDS approach, this new variational quantum solver offers an effective approach to navigate the dynamics to be free from getting trapped in the local minima that refer to different states, and achieve high accuracy at finding the ground state and its energy through the rotation of the trial wave function of modest quality, thus improves the accuracy and efficiency of the quantum simulation. We demonstrate the performance of the proposed variational quantum solver for toy models, H$_2$ molecule, and strongly correlated planar H$_4$ system in some challenging situations. In all the case studies, the proposed variational quantum approach outperforms the usual VQE and static PDS calculations even at the lowest order. We also discuss the limitations of the proposed approach and its preliminary execution for model Hamiltonian on the NISQ device.



rate research

Read More

Previously proposed quantum algorithms for solving linear systems of equations cannot be implemented in the near term due to the required circuit depth. Here, we propose a hybrid quantum-classical algorithm, called Variational Quantum Linear Solver (VQLS), for solving linear systems on near-term quantum computers. VQLS seeks to variationally prepare $|xrangle$ such that $A|xranglepropto|brangle$. We derive an operationally meaningful termination condition for VQLS that allows one to guarantee that a desired solution precision $epsilon$ is achieved. Specifically, we prove that $C geq epsilon^2 / kappa^2$, where $C$ is the VQLS cost function and $kappa$ is the condition number of $A$. We present efficient quantum circuits to estimate $C$, while providing evidence for the classical hardness of its estimation. Using Rigettis quantum computer, we successfully implement VQLS up to a problem size of $1024times1024$. Finally, we numerically solve non-trivial problems of size up to $2^{50}times2^{50}$. For the specific examples that we consider, we heuristically find that the time complexity of VQLS scales efficiently in $epsilon$, $kappa$, and the system size $N$.
Variational quantum algorithms have found success in the NISQ era owing to their hybrid quantum-classical approach which mitigate the problems of noise in quantum computers. In our study we introduce the dynamic ansatz in the Variational Quantum Linear Solver for a system of linear algebraic equations. In this improved algorithm, the number of layers in the hardware efficient ansatz circuit is evolved, starting from a small and gradually increasing until convergence of the solution is reached. We demonstrate the algorithm advantage in comparison to the standard, static ansatz by utilizing fewer quantum resources and with a smaller quantum depth on average, in presence and absence of quantum noise, and in cases when the number of qubits or condition number of the system matrix are increased. The numbers of iterations and layers can be altered by a switching parameter. The performance of the algorithm in using quantum resources is quantified by a newly defined metric.
Variational Hybrid Quantum Classical Algorithms (VHQCAs) are a class of quantum algorithms intended to run on noisy intermediate-scale quantum (NISQ) devices. These algorithms employ a parameterized quantum circuit (ansatz) and a quantum-classical feedback loop. A classical device is used to optimize the parameters in order to minimize a cost function that can be computed far more efficiently on a quantum device. The cost function is constructed such that finding the ansatz parameters that minimize its value, solves some problem of interest. We focus specifically on the Variational Quantum Linear Solver (VQLS), and examine the effect of several gradient-free and gradient-based classical optimizers on performance. We focus on both the average rate of convergence of the classical optimizers studied, as well as the distribution of their average termination cost values, and how these are affected by noise. Our work demonstrates that realistic noise levels on NISQ devices present a challenge to the optimization process. All classical optimizers appear to be very negatively affected by the presence of realistic noise. If noise levels are significantly improved, there may be a good reason for preferring gradient-based methods in the future, which performed better than the gradient-free methods with the only shot-noise present. The gradient-free optimizers, Simultaneous Perturbation Stochastic Approximation (SPSA) and Powells method, and the gradient-based optimizers, AMSGrad and BFGS performed the best in the noisy simulation, and appear to be less affected by noise than the rest of the methods. SPSA appears to be the best performing method. COBYLA, Nelder-Mead and Conjugate-Gradient methods appear to be the most heavily affected by noise, with even slight noise levels significantly impacting their performance.
Recently, an adaptive variational algorithm termed Adaptive Derivative-Assembled Pseudo-Trotter ansatz Variational Quantum Eigensolver (ADAPT-VQE) has been proposed by Grimsley et al. (Nat. Commun. 10, 3007) while the number of measurements required to perform this algorithm scales O(N^8). In this work, we present an efficient adaptive variational quantum solver of the Schrodinger equation based on ADAPT-VQE together with the reduced density matrix reconstruction approach, which reduces the number of measurements from O(N^8) to O(N^4). This new algorithm is quite suitable for quantum simulations of chemical systems on near-term noisy intermediate-scale hardware due to low circuit complexity and reduced measurement. Numerical benchmark calculations for small molecules demonstrate that this new algorithm provides an accurate description of the ground-state potential energy curves. In addition, we generalize this new algorithm for excited states with the variational quantum deflation approach and achieve the same accuracy as ground-state simulations.
101 - Karol Kowalski , Bo Peng 2020
Further advancement of quantum computing (QC) is contingent on enabling many-body models that avoid deep circuits and excessive use of CNOT gates. To this end, we develop a QC approach employing finite-order connected moment expansions (CMX) and affordable procedures for initial state preparation. We demonstrate the performance of our approach employing several quantum variants of CMX through the classical emulations on the H2 molecule potential energy surface and the Anderson model with a broad range of correlation strength. The results show that our approach is robust and flexible. Good agreements with exact solutions can be maintained even at the dissociation and strong correlation limits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا