GhostSR: Learning Ghost Features for Efficient Image Super-Resolution


Abstract in English

Modern single image super-resolution (SISR) system based on convolutional neural networks (CNNs) achieves fancy performance while requires huge computational costs. The problem on feature redundancy is well studied in visual recognition task, but rarely discussed in SISR. Based on the observation that many features in SISR models are also similar to each other, we propose to use shift operation to generate the redundant features (i.e., Ghost features). Compared with depth-wise convolution which is not friendly to GPUs or NPUs, shift operation can bring practical inference acceleration for CNNs on common hardware. We analyze the benefits of shift operation for SISR and make the shift orientation learnable based on Gumbel-Softmax trick. For a given pre-trained model, we first cluster all filters in each convolutional layer to identify the intrinsic ones for generating intrinsic features. Ghost features will be derived by moving these intrinsic features along a specific orientation. The complete output features are constructed by concatenating the intrinsic and ghost features together. Extensive experiments on several benchmark models and datasets demonstrate that both the non-compact and lightweight SISR models embedded in our proposed module can achieve comparable performance to that of their baselines with large reduction of parameters, FLOPs and GPU latency. For instance, we reduce the parameters by 47%, FLOPs by 46% and GPU latency by 41% of EDSR x2 network without significant performance degradation.

Download