Do you want to publish a course? Click here

Damped perturbations in stellar systems: Genuine modes and Landau-damped waves

57   0   0.0 ( 0 )
 Added by Evgeny Polyachenko
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

This research was stimulated by the recent studies of damping solutions in dynamically stable spherical stellar systems. Using the simplest model of the homogeneous stellar medium, we discuss nontrivial features of stellar systems. Taking them into account will make it possible to correctly interpret the results obtained earlier and will help to set up decisive numerical experiments in the future. In particular, we compare the initial value problem versus the eigenvalue problem. It turns out that in the unstable regime, the Landau-damped waves can be represented as a superposition of van Kampen modes {it plus} a discrete damped mode, usually ignored in the stability study. This mode is a solution complex conjugate to the unstable Jeans mode. In contrast, the Landau-damped waves are not genuine modes: in modes, eigenfunctions depend on time as $exp (-{rm i} omega t)$, while the waves do not have eigenfunctions on the real $v$-axis at all. However, `eigenfunctions on the complex $v$-contours do exist. Deviations from the Landau damping are common and can be due to singularities or cut-off of the initial perturbation above some fixed value in the velocity space.



rate research

Read More

Because all stars contribute to its gravitational potential, stellar clusters amplify perturbations collectively. In the limit of small fluctuations, this is described through linear response theory, via the so-called response matrix. While the evaluation of this matrix is somewhat straightforward for unstable modes (i.e. with a positive growth rate), it requires a careful analytic continuation for damped modes (i.e. with a negative growth rate). We present a generic method to perform such a calculation in spherically symmetric stellar clusters. When applied to an isotropic isochrone cluster, we recover the presence of a low-frequency weakly damped $ell = 1$ mode. We finally use a set of direct $N$-body simulations to test explicitly this prediction through the statistics of the correlated random walk undergone by a clusters density centre.
We consider the questions of whether the damped Lyman-alpha (DLA) and sub-DLA absorbers in quasar spectra differ intrinsically in metallicity, and whether they could arise in galaxies of different masses. Using the recent measurements of the robust metallicity indicators Zn and S in DLAs and sub-DLAs, we confirm that sub-DLAs have higher mean metallicities than DLAs, especially at $z lesssim 2$. We find that the intercept of the metallicity-redshift relation derived from Zn and S is higher than that derived from Fe by 0.5-0.6 dex. We also show that, while there is a correlation between the metallicity and the rest equivalent width of Mg II $lambda 2796$ or Fe II $lambda 2599$ for DLAs, no correlation is seen for sub-DLAs. Given this, and the similar Mg II or Fe II selection criteria employed in the discovery of both types of systems at lower redshifts, the difference between metallicities of DLAs and sub-DLAs appears to be real and not an artefact of selection. This conclusion is supported by our simulations of Mg II $lambda 2796$ and Fe II $lambda 2599$ lines for a wide range of physical conditions. On examining the velocity spreads of the absorbers, we find that sub-DLAs show somewhat higher mean and median velocity spreads ($Delta v$), and an excess of systems with $Delta v > 150$ km s$^{-1}$, than DLAs. Compared to DLAs, the [Mn/Fe] vs. [Zn/H] trend for sub-DLAs appears to be steeper and closer to the trend for Galactic bulge and thick disk stars, possibly suggesting different stellar populations. The absorber data appear to be consistent with galaxy down-sizing. The data are also consistent with the relative number densities of low-mass and high-mass galaxies. It is thus plausible that sub-DLAs arise in more massive galaxies on average than DLAs.
The XQ-100 survey has provided high signal-noise spectra of 100 redshift 3-4.5 quasars with the X-Shooter spectrograph. The metal abundances for 13 elements in the 41 damped Lyman alpha systems (DLAs) identified in the XQ-100 sample are presented, and an investigation into abundances of a variety of DLA classes is conducted. The XQ-100 DLA sample contains five DLAs within 5000 km/s of their host quasar (proximate DLAs; PDLAs) as well as three sightlines which contain two DLAs within 10,000 km/s of each other along the same line-of-sight (multiple DLAs; MDLAs). Combined with previous observations in the literature, we demonstrate that PDLAs with logN(HI)<21.0 show lower [S/H] and [Fe/H] (relative to intervening systems with similar redshift and N(HI)), whilst higher [S/H] and [Si/H] are seen in PDLAs with logN(HI)>21.0. These abundance discrepancies are independent of their line-of-sight velocity separation from the host quasar, and the velocity width of the metal lines (v90). Contrary to previous studies, MDLAs show no difference in [alpha/Fe] relative to single DLAs matched in metallicity and redshift. In addition, we present follow-up UVES data of J0034+1639, a sightline containing three DLAs, including a metal-poor DLA with [Fe/H]=-2.82 (the third lowest [Fe/H] in DLAs identified to date) at z=4.25. Lastly we study the dust-corrected [Zn/Fe], emphasizing that near-IR coverage of X-Shooter provides unprecedented access to MgII, CaII and TiII lines (at redshifts 3-4) to provide additional evidence for subsolar [Zn/Fe] ratio in DLAs.
202 - Tayyaba Zafar 2014
Nitrogen is thought to have both primary and secondary origins depending on whether the seed carbon and oxygen are produced by the star itself (primary) or already present in the interstellar medium (secondary) from which star forms. DLA and sub-DLA systems with typical metallicities of -3.0<Z/Z_sun<-0.5 are excellent tools to study nitrogen production. We made a search for nitrogen in the ESO-UVES advanced data products (EUADP) database. In the EUADP database, we find 10 new measurements and 9 upper limits of nitrogen. We further compiled DLA/sub-DLA data from the literature with estimates available of nitrogen and alpha-elements. This yields a total of 98 systems, i.e. the largest nitrogen abundance sample investigated so far. In agreement with previous studies, we indeed find a bimodal [N/alpha] behaviour: three-quarter systems show a mean value of [N/alpha]=-0.87 with a scatter of 0.21 dex and one-quarter shows ratios clustered at [N/alpha]=-1.43 with a lower dispersion of 0.13 dex. The high [N/alpha] group is consistent with the blue compact dwarves and dwarf irregular galaxies, suggesting primary nitrogen production. The low [N/alpha] group is the lowest ever observed in any astrophysical site and probably provides an evidence of the primary production by fast rotating massive stars in young sites. Moreover, we find a transition between the two [N/alpha] groups around [N/H]=-2.5. The transition is not abrupt and there are a few systems lying in the transition region. Additional observations of DLAs/sub-DLAs below [N/H]<-2.5 would provide more clues.
130 - C. W. Gardiner 2003
A comprehensive input-output theory is developed for Fermionic input fields. Quantum stochastic differential equations are developed in both the Ito and Stratonovich forms. The major technical issue is the development of a formalism which takes account of anticommutation relations between the Fermionic driving field and those system operators which can change the number of Fermions within the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا