No Arabic abstract
We observed the high-mass star-forming region G335.579-0.292 with the Atacama Large Millimeter/submillimeter Array (ALMA) at 226 GHz with an angular resolution of 0.3 ($sim 1000$ au resolution at the source distance). G335.579-0.292 hosts one of the most massive cores in the Galaxy (G335-MM1). The continuum emission shows that G335-MM1 fragments into at least five sources, while molecular line emission is detected in two of the continuum sources (ALMA1 and ALMA3). We found evidence of large and small scale infall in ALMA1 revealed by an inverse P-Cygni profile and the presence of a blue-shifted spot at the center of the first moment map of the CH$_3$CN emission. In addition, hot gas expansion in the innermost region is unveiled by a red-shifted spot in the first moment map of HDCO and (CH$_3$)$_2$CO (both with $E_u > 1100$ K). Our modeling reveals that this expansion motion originates close to the central source, likely due to reversal of the accretion flow induced by the expansion of the HII region, while infall and rotation motions originate in the outer regions. ALMA3 shows clear signs of rotation, with a rotation axis inclination with respect to the line of sight close to $90^circ$, and a system mass (disk + star) in the range of 10-30 M$_odot$.
Here we present the first results from ALMA observations of 1 mm polarized dust emission towards the W43-MM1 high mass star forming clump. We have detected a highly fragmented filament with source masses ranging from 14Msun to 312Msun, where the largest fragment, source A, is believed to be one of the most massive in our Galaxy. We found a smooth, ordered, and detailed polarization pattern throughout the filament which we used to derived magnetic field morphologies and strengths for 12 out of the 15 fragments detected ranging from 0.2 to 9 mG. The dynamical equilibrium of each fragment was evaluated finding that all the fragments are in a super-critical state which is consistent with previously detected infalling motions towards W43-MM1. Moreover, there are indications suggesting that the field is being dragged by gravity as the whole filament is collapsing.
Aims. To constrain the physical processes that lead to the birth of high-mass stars it is mandatory to study the very first stages of their formation. We search for high-mass analogs of low-mass prestellar cores in W43-MM1. Methods. We conducted a 1.3 mm ALMA mosaic of the complete W43-MM1 cloud, which has revealed numerous cores with ~ 2000 au FWHM sizes. We investigated the nature of cores located at the tip of the main filament, where the clustering is minimum. We used the continuum emission to measure the core masses and the $^{13}$CS(5-4) line emission to estimate their turbulence level. We also investigated the prestellar or protostellar nature of these cores by searching for outflow signatures traced by CO(2-1) and SiO(5-4) line emission, and for molecular complexity typical of embedded hot cores. Results. Two high-mass cores of ~ 1300 au diameter and ~ $60~M_odot$ mass are observed to be turbulent but gravitationally bound. One drives outflows and is associated with a hot core. The other core, W43-MM1#6, does not yet reveal any star formation activity and thus is an excellent high-mass prestellar core candidate.
The present study aims at characterizing the massive star forming region G35.20N, which is found associated with at least one massive outflow and contains multiple dense cores, one of them recently found associated with a Keplerian rotating disk. We used ALMA to observe the G35.20N region in the continuum and line emission at 350 GHz. The observed frequency range covers tracers of dense gas (e.g. H13CO+, C17O), molecular outflows (e.g. SiO), and hot cores (e.g. CH3CN, CH3OH). The ALMA 870 um continuum emission map reveals an elongated dust structure (0.15 pc long and 0.013 pc wide) perpendicular to the large-scale molecular outflow detected in the region, and fragmented into a number of cores with masses 1-10 Msun and sizes 1600 AU. The cores appear regularly spaced with a separation of 0.023 pc. The emission of dense gas tracers such as H13CO+ or C17O is extended and coincident with the dust elongated structure. The three strongest dust cores show emission of complex organic molecules characteristic of hot cores, with temperatures around 200 K, and relative abundances 0.2-2x10^(-8) for CH3CN and 0.6-5x10^(-6) for CH3OH. The two cores with highest mass (cores A and B) show coherent velocity fields, with gradients almost aligned with the dust elongated structure. Those velocity gradients are consistent with Keplerian disks rotating about central masses of 4-18 Msun. Perpendicular to the velocity gradients we have identified a large-scale precessing jet/outflow associated with core B, and hints of an east-west jet/outflow associated with core A. The elongated dust structure in G35.20N is fragmented into a number of dense cores that may form massive stars. Based on the velocity field of the dense gas, the orientation of the magnetic field, and the regularly spaced fragmentation, we interpret this elongated structure as the densest part of a 1D filament fragmenting and forming massive stars.
Context. The different theoretical models concerning the formation of high-mass stars make distinct predictions regarding their progenitors, i.e. the high-mass prestellar cores. However, so far no conclusive observation of such objects has been made. Aims. We aim to study the very early stages of high-mass star formation in two infrared-dark, massive clumps, to identify the core population that they harbour. Methods. We obtained ALMA observations of continuum emission at 0.8mm and of the ortho-$rm H_2D^+$ transition at 372GHz towards the two clumps. We use the SCIMES algorithm to identify cores in the position-position-velocity space, finding 16 cores. We model their observed spectra in the LTE approximation, deriving the centroid velocity, linewidth, and column density maps. We also study the correlation between the continuum and molecular data, which in general do not present the same structure. Results. We report for the first time the detection of ortho-$rm H_2D^+$ in high-mass star-forming regions performed with an interferometer. The molecular emission shows narrow and subsonic lines, suggesting that locally the temperature of the gas is less than 10K. From the continuum emission we estimate the cores total masses, and compare them with the respective virial masses. We also compute the volume density values, which are found to be higher than $10^{6}, rm cm^{-3}$. Conclusions. Our data confirm that ortho-$rm H_2D^+$ is an ideal tracer of cold and dense gas. Interestingly, almost all the $rm H_2D^+$-identified cores are less massive than 13M_sun , with the exception of one core in AG354. Furthermore, most of them are subvirial and larger than their Jeans masses. These results are difficult to explain in the context of the turbulent accretion models, which predict massive and virialised prestellar cores.
We use sub-arcsecond resolution ($sim$0.4$$) observations with NOEMA at 1.37 mm to study the dust emission and molecular gas of 18 high-mass star-forming regions. We combine the derived physical and chemical properties of individual cores in these regions to estimate their ages. The temperature structure of these regions are determined by fitting H2CO and CH3CN line emission. The density profiles are inferred from the 1.37 mm continuum visibilities. The column densities of 11 different species are determined by fitting the emission lines with XCLASS. Within the 18 observed regions, we identify 22 individual cores with associated 1.37 mm continuum emission and with a radially decreasing temperature profile. We find an average temperature power-law index of q = 0.4$pm$0.1 and an average density power-law index of p = 2.0$pm$0.2 on scales on the order of several 1 000 au. Comparing these results with values of p derived in the literature suggest that the density profiles remain unchanged from clump to core scales. The column densities relative to N(C18O) between pairs of dense gas tracers show tight correlations. We apply the physical-chemical model MUSCLE to the derived column densities of each core and find a mean chemical age of $sim$60 000 yrs and an age spread of 20 000-100 000 yrs. With this paper we release all data products of the CORE project available at https://www.mpia.de/core. The CORE sample reveals well constrained density and temperature power-law distributions. Furthermore, we characterize a large variety in molecular richness that can be explained by an age spread confirmed by our physical-chemical modeling. The hot molecular cores show the most emission lines, but we also find evolved cores at an evolutionary stage, in which most molecules are destroyed and thus the spectra appear line-poor again.