Consider first passage percolation with identical and independent weight distributions and first passage time ${rm T}$. In this paper, we study the upper tail large deviations $mathbb{P}({rm T}(0,nx)>n(mu+xi))$, for $xi>0$ and $x eq 0$ with a time constant $mu$ and a dimension $d$, for weights that satisfy a tail assumption $ beta_1exp{(-alpha t^r)}leq mathbb P(tau_e>t)leq beta_2exp{(-alpha t^r)}.$ When $rleq 1$ (this includes the well-known Eden growth model), we show that the upper tail large deviation decays as $exp{(-(2dxi +o(1))n)}$. When $1< rleq d$, we find that the rate function can be naturally described by a variational formula, called the discrete p-Capacity, and we study its asymptotics. For $r<d$, we show that the large deviation event ${rm T}(0,nx)>n(mu+xi)$ is described by a localization of high weights around the origin. The picture changes for $rgeq d$ where the configuration is not anymore localized.