Learning to Augment for Data-Scarce Domain BERT Knowledge Distillation


Abstract in English

Despite pre-trained language models such as BERT have achieved appealing performance in a wide range of natural language processing tasks, they are computationally expensive to be deployed in real-time applications. A typical method is to adopt knowledge distillation to compress these large pre-trained models (teacher models) to small student models. However, for a target domain with scarce training data, the teacher can hardly pass useful knowledge to the student, which yields performance degradation for the student models. To tackle this problem, we propose a method to learn to augment for data-scarce domain BERT knowledge distillation, by learning a cross-domain manipulation scheme that automatically augments the target with the help of resource-rich source domains. Specifically, the proposed method generates samples acquired from a stationary distribution near the target data and adopts a reinforced selector to automatically refine the augmentation strategy according to the performance of the student. Extensive experiments demonstrate that the proposed method significantly outperforms state-of-the-art baselines on four different tasks, and for the data-scarce domains, the compressed student models even perform better than the original large teacher model, with much fewer parameters (only ${sim}13.3%$) when only a few labeled examples available.

Download