Do you want to publish a course? Click here

Noise Learning Based Denoising Autoencoder

113   0   0.0 ( 0 )
 Added by Woong-Hee Lee
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This letter introduces a new denoiser that modifies the structure of denoising autoencoder (DAE), namely noise learning based DAE (nlDAE). The proposed nlDAE learns the noise of the input data. Then, the denoising is performed by subtracting the regenerated noise from the noisy input. Hence, nlDAE is more effective than DAE when the noise is simpler to regenerate than the original data. To validate the performance of nlDAE, we provide three case studies: signal restoration, symbol demodulation, and precise localization. Numerical results suggest that nlDAE requires smaller latent space dimension and smaller training dataset compared to DAE.



rate research

Read More

The generative learning phase of Autoencoder (AE) and its successor Denosing Autoencoder (DAE) enhances the flexibility of data stream method in exploiting unlabelled samples. Nonetheless, the feasibility of DAE for data stream analytic deserves in-depth study because it characterizes a fixed network capacity which cannot adapt to rapidly changing environments. An automated construction of a denoising autoeconder, namely deep evolving denoising autoencoder (DEVDAN), is proposed in this paper. DEVDAN features an open structure both in the generative phase and in the discriminative phase where input features can be automatically added and discarded on the fly. A network significance (NS) method is formulated in this paper and is derived from the bias-variance concept. This method is capable of estimating the statistical contribution of the network structure and its hidden units which precursors an ideal state to add or prune input features. Furthermore, DEVDAN is free of the problem- specific threshold and works fully in the single-pass learning fashion. The efficacy of DEVDAN is numerically validated using nine non-stationary data stream problems simulated under the prequential test-then-train protocol where DEVDAN is capable of delivering an improvement of classification accuracy to recently published online learning works while having flexibility in the automatic extraction of robust input features and in adapting to rapidly changing environments.
The Denoising Autoencoder (DAE) enhances the flexibility of the data stream method in exploiting unlabeled samples. Nonetheless, the feasibility of DAE for data stream analytic deserves an in-depth study because it characterizes a fixed network capacity that cannot adapt to rapidly changing environments. Deep evolving denoising autoencoder (DEVDAN), is proposed in this paper. It features an open structure in the generative phase and the discriminative phase where the hidden units can be automatically added and discarded on the fly. The generative phase refines the predictive performance of the discriminative model exploiting unlabeled data. Furthermore, DEVDAN is free of the problem-specific threshold and works fully in the single-pass learning fashion. We show that DEVDAN can find competitive network architecture compared with state-of-the-art methods on the classification task using ten prominent datasets simulated under the prequential test-then-train protocol.
Learning useful representations with little or no supervision is a key challenge in artificial intelligence. We provide an in-depth review of recent advances in representation learning with a focus on autoencoder-based models. To organize these results we make use of meta-priors believed useful for downstream tasks, such as disentanglement and hierarchical organization of features. In particular, we uncover three main mechanisms to enforce such properties, namely (i) regularizing the (approximate or aggregate) posterior distribution, (ii) factorizing the encoding and decoding distribution, or (iii) introducing a structured prior distribution. While there are some promising results, implicit or explicit supervision remains a key enabler and all current methods use strong inductive biases and modeling assumptions. Finally, we provide an analysis of autoencoder-based representation learning through the lens of rate-distortion theory and identify a clear tradeoff between the amount of prior knowledge available about the downstream tasks, and how useful the representation is for this task.
Inspired by complexity and diversity of biological neurons, our group proposed quadratic neurons by replacing the inner product in current artificial neurons with a quadratic operation on input data, thereby enhancing the capability of an individual neuron. Along this direction, we are motivated to evaluate the power of quadratic neurons in popular network architectures, simulating human-like learning in the form of quadratic-neuron-based deep learning. Our prior theoretical studies have shown important merits of quadratic neurons and networks in representation, efficiency, and interpretability. In this paper, we use quadratic neurons to construct an encoder-decoder structure, referred as the quadratic autoencoder, and apply it to low-dose CT denoising. The experimental results on the Mayo low-dose CT dataset demonstrate the utility of quadratic autoencoder in terms of image denoising and model efficiency. To our best knowledge, this is the first time that the deep learning approach is implemented with a new type of neurons and demonstrates a significant potential in the medical imaging field.
139 - Ke He , Le He , Lisheng Fan 2021
This paper aims to devise a generalized maximum likelihood (ML) estimator to robustly detect signals with unknown noise statistics in multiple-input multiple-output (MIMO) systems. In practice, there is little or even no statistical knowledge on the system noise, which in many cases is non-Gaussian, impulsive and not analyzable. Existing detection methods have mainly focused on specific noise models, which are not robust enough with unknown noise statistics. To tackle this issue, we propose a novel ML detection framework to effectively recover the desired signal. Our framework is a fully probabilistic one that can efficiently approximate the unknown noise distribution through a normalizing flow. Importantly, this framework is driven by an unsupervised learning approach, where only the noise samples are required. To reduce the computational complexity, we further present a low-complexity version of the framework, by utilizing an initial estimation to reduce the search space. Simulation results show that our framework outperforms other existing algorithms in terms of bit error rate (BER) in non-analytical noise environments, while it can reach the ML performance bound in analytical noise environments. The code of this paper is available at https://github.com/skypitcher/manfe.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا