No Arabic abstract
We introduce a new binary detection technique, Binary INformation from Open Clusters using SEDs (binocs), which we show is able to determine reliable stellar multiplicity and masses over a much larger mass range than current approaches. This new technique determines accurate component masses of binary and single systems of the open clusters main sequence by comparing observed magnitudes from multiple photometric filters to synthetic star spectral energy distributions (SEDs) allowing systematically probing the binary population for low mass stars in clusters for 8 well-studied open clusters. We provide new deep, infrared photometric catalogs (1.2 - 8.0 microns) for the key open clusters NGC 1960 (M36), NGC 2099 (M37), NGC 2420, and NGC2682 (M67), using observation from NOAO/NEWFIRM and Spitzer}/IRAC. Using these deep multi-wavelength catalogs, the binocs method is applied to these clusters to determine accurate component masses for unresolved cluster binaries. We explore binary fractions as a function of cluster age, Galactic location and metallicity.
Studying the internal dynamics of stellar clusters is conducted primarily through N-Body simulations. One of the major inputs into N-Body simulations is the binary star frequency and mass distribution, which is currently constrained by relations derived from field binary stars. However to truly understand how clustered environments evolve, binary data from within star clusters is needed including masses. Detailed information on binaries masses, primary and secondary, in star clusters has been limited to date. The primary technique currently available has been radial velocity surveys that are limited in depth. Using previous two-band photometry-based studies that may cover different mass ranges produce potentially discrepant interpretations of the observed binary population. We introduce a new binary detection method, Binary INformation from Open Clusters Using SEDs (BINOCS) that covers the wide mass range needed to improve cluster N-body simulation inputs and comparisons. Using newly-observed multi-wavelength photometric catalogs (0.3 - 8 microns) of the key open clusters with a range of ages, we can show that the BINOCS method determines accurate binary component masses for unresolved cluster binaries through comparison to available RV-based studies. Using this method, we present results on the dynamical evolution of binaries from 0.4 - 2.5 solar masses within five prototypical clusters, spaning 30 Myr to 3.5 Gyr, and how the binary populations evolve as a function of mass.
Binary stars play a vital role in astrophysical research, as a good fraction of stars are in binaries. Binary fraction (BF) is known to change with stellar mass in the Galactic field, but such studies in clusters require binary identification and membership information. Here, we estimate the total and spectral-type-wise high mass-ratio (HMR) BF ($f^{0.6}$) in 23 open clusters using unresolved binaries in color-magnitude diagrams using textit{Gaia} DR2 data. We introduce the segregation index (SI) parameter to trace mass segregation of HMR (total and mass-wise) binaries and the reference population. This study finds that in open clusters, (1) HMR BF for the mass range 0.4--3.6 Msun (early M to late B type) has a range of 0.12 to 0.38 with a peak at 0.12--0.20, (2) older clusters have a relatively higher HMR BF, (3) the mass-ratio distribution is unlikely to be a flat distribution and BF(total) $sim$ (1.5 to 2.5) $times f^{0.6}$, (4) a decreasing BF(total) from late B-type to K-type, in agreement with the Galactic field stars, (5) older clusters show radial segregation of HMR binaries, (6) B and A/F type HMR binaries show radial segregation in some young clusters suggesting a primordial origin. This study will constrain the initial conditions and identify the major mechanisms that regulate binary formation in clusters. Primordial segregation of HMR binaries could result from massive clumps spatially segregated in the collapse phase of the molecular cloud.
In this paper, we present photometry for young star clusters in M31, which are selected from Caldwell et al. These star clusters have been observed as part of the Beijing--Arizona--Taiwan--Connecticut (BATC) Multicolor Sky Survey from 1995 February to 2008 March. The BATC images including these star clusters are taken with 15 intermediate-band filters covering 3000--10000 AA. Combined with photometry in the {sl GALEX} far- and near-ultraviolet, broad-band $UBVRI$, SDSS $ugriz$, and infrared $JHK_{rm s}$ of Two Micron All Sky Survey, we obtain their accurate spectral energy distributions (SEDs) from 1538-20000 AA. We derive these star clusters ages and masses by comparing their SEDs with stellar population synthesis models. Our results are in good agreement with previous determinations. The mean value of age and mass of young clusters ($<2$ Gyr) is about 385 Myr and $2times 10^4 {M_odot}$, respectively. There are two distinct peaks in the age distribution, a highest peak at age $sim$ 60 Myr and a secondary peak around 250 Myr, while the mass distribution shows a single peak around $10^4 {M_odot}$. A few young star clusters have two-body relaxation times greater than their ages, indicating that those clusters have not been well dynamically relaxed and therefore have not established the thermal equilibrium. There are several regions showing aggregations of young star clusters around the 10 kpc ring and the outer ring, indicating that the distribution of the young star clusters is well correlated with M31s star-forming regions. The young massive star clusters (age $leq 100$ Myr and mass $geq 10^4 {M_odot}$) show apparent concentration around the ring splitting region, suggesting a recent passage of a satellite galaxy (M32) through M31 disk.
$UBVRI$ photometry of the five open clusters Czernik 4, Berkeley 7, NGC 2236, NGC 7226 and King 12 has been carried out using ARIES 104 cm telescope, Nainital. Fundamental cluster parameters such as foreground reddening $E(B-V)$, distance, and age have been derived by means of the observed two colour and colour-magnitude diagrams, coupled to comparisons with theoretical models. $E(B-V)$ values range from 0.55 to 0.74 mag, while ages derived for these clusters range from $sim$10 to $sim$500 Myr. We have also studied the spatial structure, mass function and mass segregation effects. The present study shows that evaporation of low mass stars from the halo of the clusters increases as they evolve.
We use the Binary Population and Spectral Synthesis (BPASS) models to test the recent suggestion that red supergiants can provide an accurate age estimate of a co-eval stellar population that is unaffected by interacting binary stars. Ages are estimated by using both the minimum luminosity red supergiant and the mean luminosity of red supergiants in a cluster. We test these methods on a number of observed star clusters and find our results in agreement with previous estimates. Importantly we find the difference between the ages derived from stellar population models with and without a realistic population of interacting binary stars is only a few 100,000 years at most. We find that the mean luminosity of red supergiants in a cluster is the best method to determine the age of a cluster because it is based o the entire red supergiant population rather than using only the least luminous red supergiant.