Higher-order Fabry-Perot Interferometer from Topological Hinge States


Abstract in English

We propose an intrinsic 3D Fabry-Perot type interferometer, coined higher-order interferometer, that utilizes the chiral hinge states of second-order topological insulators and cannot be equivalently mapped to 2D space because of higher-order topology. Quantum interference patterns in the two-terminal conductance of this interferometer are controllable not only by tuning the strength but also, particularly, by rotating the direction of the magnetic field applied perpendicularly to the transport direction. Remarkably, the conductance exhibits a characteristic beating pattern with multiple frequencies with respect to field strength or direction. Our novel interferometer provides feasible and robust magneto-transport signatures to probe the particular hinge states of higher-order topological insulators.

Download