Do you want to publish a course? Click here

Non-Halo Structures and their Effects on Gravitational Lensing

65   0   0.0 ( 0 )
 Added by Thomas Richardson
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Anomalies in the flux-ratios of the images of quadruply-lensed quasars have been used to constrain the nature of dark matter. Assuming these lensing perturbations are caused by dark matter haloes, it is possible to constrain the mass of a hypothetical Warm Dark Matter (WDM) particle to be $m_chi > 5.2$ keV. However, the assumption that perturbations are only caused by DM haloes might not be correct as other structures, such as filaments and pancakes, exist and make up a significant fraction of the mass in the universe, ranging between 5$%$ -- 50$%$ depending on the dark matter model. Using novel fragmentation-free simulations of 1 and 3keV WDM cosmologies we study these non-halo structures and estimate their impact on flux-ratio observations. We find that these structures display sharp density gradients with short correlation lengths, and can contribute more to the lensing signal than all haloes up to the half-mode mass combined, thus reducing the differences expected among WDM models. We estimate that this becomes especially important for any flux-ratio based constraint sensitive to haloes of mass $M sim 10^8 M_odot$. We conclude that accounting for all types structures in strong-lensing observations is required to improve the accuracy of current and future constraints.



rate research

Read More

Gravitational lensing surveys have now become large and precise enough that the interpretation of the lensing signal has to take into account an increasing number of theoretical limitations and observational biases. Since the lensing signal is the strongest at small angular scales, only numerical simulations can reproduce faithfully the non-linear dynamics and secondary effects at play. This work is the first of a series in which all gravitational lensing corrections known so far will be implemented in the same set of simulations, using realistic mock catalogues and non-Gaussian statistics. In this first paper, we present the TCS simulation suite and compute basic statistics such as the second and third order convergence and shear correlation functions. These simple tests set the range of validity of our simulations, which are resolving most of the signals at the sub-arc minute level (or $ell sim 10^4$). We also compute the non-Gaussian covariance matrix of several statistical estimators, including many that are used in the Canada France Hawaii Telescope Lensing Survey (CFHTLenS). From the same realizations, we construct halo catalogues, computing a series of properties that are required by most galaxy population algorithms. These simulation products are publicly available for download.
High peaks in weak lensing (WL) maps originate dominantly from the lensing effects of single massive halos. Their abundance is therefore closely related to the halo mass function and thus a powerful cosmological probe. On the other hand, however, besides individual massive halos, large-scale structures (LSS) along lines of sight also contribute to the peak signals. In this paper, with ray tracing simulations, we investigate the LSS projection effects. We show that for current surveys with a large shape noise, the stochastic LSS effects are subdominant. For future WL surveys with source galaxies having a median redshift $z_{mathrm{med}}sim1$ or higher, however, they are significant. For the cosmological constraints derived from observed WL high peak counts, severe biases can occur if the LSS effects are not taken into account properly. We extend the model of citet{Fan2010} by incorporating the LSS projection effects into the theoretical considerations. By comparing with simulation results, we demonstrate the good performance of the improved model and its applicability in cosmological studies.
We study the effects of strong lensing on the observed number counts of mm sources using a ray tracing simulation and two number count models of unlensed sources. We employ a quantitative treatment of maximum attainable magnification factor depending on the physical size of the sources, also accounting for effects of lens halo ellipticity. We calculate predicted number counts and redshift distributions of mm galaxies including the effects of strong lensing and compare with the recent source count measurements of the South Pole Telescope (SPT). The predictions have large uncertainties, especially the details of the mass distribution in lens galaxies and the finite extent of sources, but the SPT observations are in good agreement with predictions. The sources detected by SPT are predicted to largely consist of strongly lensed galaxies at z>2. The typical magnifications of these sources strongly depends on both the assumed unlensed source counts and the flux of the observed sources.
335 - D. D. Xu , J. Wang (2 2009
We use high-resolution Aquarius simulations of Milky Way-sized haloes in the LCDM cosmology to study the effects of dark matter substructures on gravitational lensing. Each halo is resolved with ~ 10^8 particles (at a mass resolution ~ 10^3-4 M_sun/h) within its virial radius. Subhaloes with masses larger than 10^5 M_sun/h are well resolved, an improvement of at least two orders of magnitude over previous lensing studies. We incorporate a baryonic component modelled as a Hernquist profile and account for the response of the dark matter via adiabatic contraction. We focus on the anomalous flux ratio problem, in particular on the violation of the cusp-caustic relation due to substructures. We find that subhaloes with masses less than ~ 10^8 M_sun/h play an important role in causing flux anomalies; such low mass subhaloes have been unresolved in previous studies. There is large scatter in the predicted flux ratios between different haloes and between different projections of the same halo. In some cases, the frequency of predicted anomalous flux ratios is comparable to that observed for the radio lenses, although in most cases it is not. The probability for the simulations to reproduce the observed violations of the cusp lenses is about 0.001. We therefore conclude that the amount of substructure in the central regions of the Aquarius haloes is insufficient to explain the observed frequency of violations of the cusp-caustic relation. These conclusions are based purely on our dark matter simulations which ignore the effect of baryons on subhalo survivability.
We present a weak lensing detection of filamentary structures in the cosmic web, combining data from the Kilo-Degree Survey, the Red Cluster Sequence Lensing Survey and the Canada-France-Hawaii Telescope Lensing Survey. The line connecting luminous red galaxies with a separation of $3 - 5, h^{-1}text{Mpc}$ is chosen as a proxy for the location of filaments. We measure the average weak lensing shear around $sim$11,000 candidate filaments selected in this way from the Sloan Digital Sky Survey. After nulling the shear induced by the dark matter haloes around each galaxy, we report a $3.4,sigma$ detection of an anisotropic shear signal from the matter that connects them. Adopting a filament density profile, motivated from $N$-body simulations, the average density at the centre of these filamentary structures is found to be $15 pm 4$ times the critical density.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا