Do you want to publish a course? Click here

Deterministic generation of multidimensional photonic cluster states using time-delay feedback

115   0   0.0 ( 0 )
 Added by Yu Shi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cluster states are useful in many quantum information processing applications. In particular, universal measurement-based quantum computation (MBQC) utilizes 2D cluster states, and topologically fault-tolerant MBQC requires cluster states with three or higher dimensions. This work proposes a protocol to deterministically generate multidimensional photonic cluster states using a single atom-cavity system and time-delay feedback. The dimensionality of the cluster state increases linearly with the number of time-delay feedback. We firstly give a diagrammatic derivation of the tensor network states, which is valuable in simulating matrix product states and projected entangled pair states generated from sequential photons. Our method also provides a simple way to bridge and analyze the experimental imperfections and the logical errors of the generated states. In this method, we analyze the generated cluster states under realistic experimental conditions and address both one-qubit and two-qubit errors. Through numerical simulation, we observe an optimal atom-cavity cooperativity for the fidelity of the generated states, which is surprising given the prevailing assumption that higher cooperativity systems are inherently better for photonic applications.



rate research

Read More

A scheme to utilize atom-like emitters coupled to nanophotonic waveguides is proposed for the generation of many-body entangled states and for the reversible mapping of these states of matter to photonic states of an optical pulse in the waveguide. Our protocol makes use of decoherence-free subspaces (DFS) for the atomic emitters with coherent evolution within the DFS enforced by strong dissipative coupling to the waveguide. By switching from subradiant to superradiant states, entangled atomic states are mapped to photonic states with high fidelity. An implementation using ultracold atoms coupled to a photonic crystal waveguide is discussed.
The generation of non-classical states of light via photon blockade with time-modulated input is analyzed. We show that improved single photon statistics can be obtained by adequately choosing the parameters of the driving laser pulses. An alternative method, where the system is driven via a continuous wave laser and the frequency of the dipole is controlled (e.g. electrically) at very fast timescales is presented.
We use semiconductor quantum dots, artificial atoms, to implement a scheme for deterministic generation of long strings of entangled photons in a cluster state, an important resource for quantum information processing. We demonstrate a prototype device which produces strings of a few hundred photons in which the entanglement persists over 5 sequential photons. The implementation follows a proposal by Lindner and Rudolph (Phys. Rev. Lett. 2009) which suggested periodic timed excitation of a precessing electron spin as a mechanism for entangling the electron spin with the polarization of the sequentially emitted photons. In our realization, the entangling qubit is a quantum dot confined dark exciton. By performing full quantum process tomography, we obtain the process map which fully characterizes the evolution of the system, containing the dark exciton and n photons after n applications of the periodic excitations. Our implementation may greatly reduce the resources needed for quantum information processing.
471 - X. X. Li , H. D. Yin , D. X. Li 2019
Entanglement can be considered as a special quantum correlation, but not the only kind. Even for a separable quantum system, it is allowed to exist non-classical correlations. Here we propose two dissipative schemes for generating a maximally correlated state of two qubits in the absence of quantum entanglement, which was raised by [F. Galve, G. L. Giorgi, and R. Zambrini, {color{blue}Phys. Rev. A {bf 83}, 012102 (2011)}]. These protocols take full advantages of the interaction between four-level atoms and strongly lossy optical cavities. In the first scenario, we alternatively change the phases of two classical driving fields, while the second proposal introduces a strongly lossy coupled-cavity system. Both schemes can realize all Lindblad terms required by the dissipative dynamics, guaranteeing the maximally quantum dissonant state to be the unique steady state for a certain subspace of system. Moreover, since the target state is a mixed state, the performance of our method is evaluated by the definition of super-fidelity $G(rho_{1},rho_{2})$, and the strictly numerical simulations indicate that fidelity outstripping $99%$ of the quantum dissonant state is achievable with the current cavity quantum electrodynamics parameters.
We propose a circuit QED platform and protocol to deterministically generate microwave photonic tensor network states. We first show that using a microwave cavity as ancilla and a transmon qubit as emitter is a favorable platform to produce photonic matrix-product states. The ancilla cavity combines a large controllable Hilbert space with a long coherence time, which we predict translates into a high number of entangled photons and states with a high bond dimension. Going beyond this paradigm, we then consider a natural generalization of this platform, in which several cavity--qubit pairs are coupled to form a chain. The photonic states thus produced feature a two-dimensional entanglement structure and are readily interpreted as $textit{radial plaquette}$ projected entangled pair states, which include many paradigmatic states, such as the broad class of isometric tensor network states, graph states, string-net states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا