Light-emission from ion-implanted group-IV nanostructures


Abstract in English

Silicon photonics is destined to revolutionize technological areas, such as short-distance data transfer and sensing applications by combining the benefits of integrated optics with the assertiveness of silicon-based microelectronics. However, the lack of practical and low-cost silicon-based monolithic light sources such as light-emitting diodes and, in particular, lasers is the main bottleneck for silicon photonics to become the key technology of the 21st century. After briefly reviewing the state of the art regarding silicon-based light-emitters, we discuss the challenges and benefits of a highly flexible approach: The epitaxial incorporation of group-IV nanostructures into crystalline silicon. We argue that a paradigm change for group-IV quantum dots (QDs) can be achieved by the intentional incorporation of extended point defects inside the QDs upon low energy ion implantation. The superior light-emission properties from such defect-enhanced quantum dots (DEQDs), our present understanding of their structural formation and light-emission mechanisms will be discussed. We will show that useful electrically-driven devices, such as light-emitting diodes (LEDs) can be fabricated employing optically active DEQD-material. These LEDs exhibit exceptional temperature-stability of their light emission properties even up to 100{deg}C, unprecedented for purely group-IV-based optoelectronic devices. Thereafter, we will assess the superior temperature stability of the structural properties of DEQDs upon thermal annealing, the scalability of the light-emission with the DEQD density and passivation schemes to further improve the optical properties. The chapter ends with a discussion of future research directions that will spark the development of this exciting field even further.

Download