Do you want to publish a course? Click here

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning

101   0   0.0 ( 0 )
 Added by Zeming Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we present a novel approach, Momentum$^2$ Teacher, for student-teacher based self-supervised learning. The approach performs momentum update on both network weights and batch normalization (BN) statistics. The teachers weight is a momentum update of the student, and the teachers BN statistics is a momentum update of those in history. The Momentum$^2$ Teacher is simple and efficient. It can achieve the state of the art results (74.5%) under ImageNet linear evaluation protocol using small-batch size(eg, 128), without requiring large-batch training on special hardware like TPU or inefficient across GPU operation (eg, shuffling BN, synced BN). Our implementation and pre-trained models will be given on GitHubfootnote{https://github.com/zengarden/momentum2-teacher}.



rate research

Read More

The Mean Teacher (MT) model of Tarvainen and Valpola has shown favorable performance on several semi-supervised benchmark datasets. MT maintains a teacher models weights as the exponential moving average of a student models weights and minimizes the divergence between their probability predictions under diverse perturbations of the inputs. However, MT is known to suffer from confirmation bias, that is, reinforcing incorrect teacher model predictions. In this work, we propose a simple yet effective method called Local Clustering (LC) to mitigate the effect of confirmation bias. In MT, each data point is considered independent of other points during training; however, data points are likely to be close to each other in feature space if they share similar features. Motivated by this, we cluster data points locally by minimizing the pairwise distance between neighboring data points in feature space. Combined with a standard classification cross-entropy objective on labeled data points, the misclassified unlabeled data points are pulled towards high-density regions of their correct class with the help of their neighbors, thus improving model performance. We demonstrate on semi-supervised benchmark datasets SVHN and CIFAR-10 that adding our LC loss to MT yields significant improvements compared to MT and performance comparable to the state of the art in semi-supervised learning.
In order to train robust deep learning models, large amounts of labelled data is required. However, in the absence of such large repositories of labelled data, unlabeled data can be exploited for the same. Semi-Supervised learning aims to utilize such unlabeled data for training classification models. Recent progress of self-training based approaches have shown promise in this area, which leads to this study where we utilize an ensemble approach for the same. A by-product of any semi-supervised approach may be loss of calibration of the trained model especially in scenarios where unlabeled data may contain out-of-distribution samples, which leads to this investigation on how to adapt to such effects. Our proposed algorithm carefully avoids common pitfalls in utilizing unlabeled data and leads to a more accurate and calibrated supervised model compared to vanilla self-training based student-teacher algorithms. We perform several experiments on the popular STL-10 database followed by an extensive analysis of our approach and study its effects on model accuracy and calibration.
Recently, consistency-based methods have achieved state-of-the-art results in semi-supervised learning (SSL). These methods always involve two roles, an explicit or implicit teacher model and a student model, and penalize predictions under different perturbations by a consistency constraint. However, the weights of these two roles are tightly coupled since the teacher is essentially an exponential moving average (EMA) of the student. In this work, we show that the coupled EMA teacher causes a performance bottleneck. To address this problem, we introduce Dual Student, which replaces the teacher with another student. We also define a novel concept, stable sample, following which a stabilization constraint is designed for our structure to be trainable. Further, we discuss two variants of our method, which produce even higher performance. Extensive experiments show that our method improves the classification performance significantly on several main SSL benchmarks. Specifically, it reduces the error rate of the 13-layer CNN from 16.84% to 12.39% on CIFAR-10 with 1k labels and from 34.10% to 31.56% on CIFAR-100 with 10k labels. In addition, our method also achieves a clear improvement in domain adaptation.
104 - Yucen Luo , Jun Zhu , Mengxi Li 2017
The recently proposed self-ensembling methods have achieved promising results in deep semi-supervised learning, which penalize inconsistent predictions of unlabeled data under different perturbations. However, they only consider adding perturbations to each single data point, while ignoring the connections between data samples. In this paper, we propose a novel method, called Smooth Neighbors on Teacher Graphs (SNTG). In SNTG, a graph is constructed based on the predictions of the teacher model, i.e., the implicit self-ensemble of models. Then the graph serves as a similarity measure with respect to which the representations of similar neighboring points are learned to be smooth on the low-dimensional manifold. We achieve state-of-the-art results on semi-supervised learning benchmarks. The error rates are 9.89%, 3.99% for CIFAR-10 with 4000 labels, SVHN with 500 labels, respectively. In particular, the improvements are significant when the labels are fewer. For the non-augmented MNIST with only 20 labels, the error rate is reduced from previous 4.81% to 1.36%. Our method also shows robustness to noisy labels.
This paper focuses on Semi-Supervised Object Detection (SSOD). Knowledge Distillation (KD) has been widely used for semi-supervised image classification. However, adapting these methods for SSOD has the following obstacles. (1) The teacher model serves a dual role as a teacher and a student, such that the teacher predictions on unlabeled images may be very close to those of student, which limits the upper-bound of the student. (2) The class imbalance issue in SSOD hinders an efficient knowledge transfer from teacher to student. To address these problems, we propose a novel method Temporal Self-Ensembling Teacher (TSE-T) for SSOD. Differently from previous KD based methods, we devise a temporally evolved teacher model. First, our teacher model ensembles its temporal predictions for unlabeled images under stochastic perturbations. Second, our teacher model ensembles its temporal model weights with the student model weights by an exponential moving average (EMA) which allows the teacher gradually learn from the student. These self-ensembling strategies increase data and model diversity, thus improving teacher predictions on unlabeled images. Finally, we use focal loss to formulate consistency regularization term to handle the data imbalance problem, which is a more efficient manner to utilize the useful information from unlabeled images than a simple hard-thresholding method which solely preserves confident predictions. Evaluated on the widely used VOC and COCO benchmarks, the mAP of our method has achieved 80.73% and 40.52% on the VOC2007 test set and the COCO2014 minval5k set respectively, which outperforms a strong fully-supervised detector by 2.37% and 1.49%. Furthermore, our method sets the new state-of-the-art in SSOD on VOC2007 test set which outperforms the baseline SSOD method by 1.44%. The source code of this work is publicly available at http://github.com/syangdong/tse-t.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا