Do you want to publish a course? Click here

Implementing Asymmetric Dark Matter and Dark Electroweak Baryogenesis in a Mirror Two-Higgs-Doublet Model

159   0   0.0 ( 0 )
 Added by Alexander Ritter
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Models of asymmetric dark matter (ADM) seek to explain the apparent coincidence between the present-day mass densities of visible and dark matter, $Omega_{mathrm{DM}} simeq 5Omega_{mathrm{VM}}$. However, most ADM models only relate the number densities of visible and dark matter without motivating the similar particle masses. We expand upon a recent work that obtained a natural mass relationship in a mirror matter ADM model with two Higgs doublets in each sector, by looking to implement dark electroweak baryogenesis as the means of asymmetry generation. We explore two aspects of the mechanism: the nature of the dark electroweak phase transition, and the transfer of particle asymmetries between the sectors by the use of portal interactions. We find that both aspects can be implemented successfully for various regions of the parameter space. We also analyse one portal interaction -- the neutron portal -- in greater detail, in order to satisfy the observational constraints on dark radiation.



rate research

Read More

Recently we presented the upgrade of our code BSMPT for the calculation of the electroweak phase transition (EWPT) to BSMPT v2 which now includes the computation of the baryon asymmetry of the universe (BAU) in the CP-violating 2-Higgs-Doublet Model (C2HDM). In this paper we use {tt BSMPT v2} to investigate the size of the BAU that is obtained in the C2HDM with the two implemented approaches FH and VIA to derive the transport equations, by taking into account all relevant theoretical and experimental constraints. We identify similarities and differences in the results computed with the two methods. In particular, we analyse the dependence of the obtained BAU on the parameters relevant for successful baryogenesis. Our investigations allow us to pinpoint future directions for improvements both in the computation of the BAU and in possible avenues taken for model building.
We study a fermionic dark matter model in which the interaction of the dark and visible sectors is mediated by Higgs portal type couplings. Specifically, we consider the mixing of a dark sector scalar with the scalars of a Two Higgs Doublet Model extension of the Standard Model. Given that scalar exchange will result in a spin-independent dark matter-nucleon scattering cross section, such a model is potentially subject to stringent direct detection constraints. Moreover, the addition of new charged scalars introduce non-trivial flavour constraints. Nonetheless, this model allows more freedom than a standard Higgs portal scenario involving a single Higgs doublet, and much of the interesting parameter space is not well approximated by a Simplified Model with a single scalar mediator. We perform a detailed parameter scan to determine the mass and coupling parameters which satisfy direct detection, flavour, precision electroweak, stability, and perturbativity constraints, while still producing the correct relic density through thermal freezeout.
We study a two scalar inert doublet model (IDMS$_3$) which is stabilized by a $S_3$ symmetry. We consider two scenarios: i) two of the scalars in each charged sector are mass degenerated due to a residual $Z_2$ symmetry, ii) there is no mass degeneracy because of the introduction of soft terms that break the $Z_2$ symmetry. We show that both scenarios provide good dark matter candidates for some range of parameters.
We examine the neutralino relic density in the presence of a light top squark, such as the one required for the realization of the electroweak baryogenesis mechanism, within the minimal supersymmetric standard model. We show that there are three clearly distinguishable regions of parameter space, where the relic density is consistent with WMAP and other cosmological data. These regions are characterized by annihilation cross sections mediated by either light Higgs bosons, Z bosons, or by the co-annihilation with the lightest stop. Tevatron collider experiments can test the presence of the light stop in most of the parameter space. In the co-annihilation region, however, the mass difference between the light stop and the lightest neutralino varies between 15 and 30 GeV, presenting an interesting challenge for stop searches at hadron colliders. We present the prospects for direct detection of dark matter, which provides a complementary way of testing this scenario. We also derive the required structure of the high energy soft supersymmetry breaking mass parameters where the neutralino is a dark matter candidate and the stop spectrum is consistent with electroweak baryogenesis and the present bounds on the lightest Higgs mass.
In the framework of type-II two-Higgs-doublet model with a singlet scalar dark matter $S$, we study the dark matter observables, the electroweak phase transition, and the gravitational wave signals by such strongly first order phase transition after imposing the constraints of the LHC Higgs data. We take the heavy CP-even Higgs $H$ as the only portal between the dark matter and SM sectors, and find the LHC Higgs data and dark matter observables require $m_S$ and $m_H$ to be larger than 130 GeV and 360 GeV for $m_A=600$ GeV in the case of the 125 GeV Higgs with the SM-like coupling. Next, we carve out some parameter space where a strongly first order electroweak phase transition can be achieved, and find benchmark points for which the amplitudes of gravitational wave spectra reach the sensitivities of the future gravitational wave detectors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا