Do you want to publish a course? Click here

Formation of Temporally Shaped Electron Bunches for Beam-Driven Collinear Wakefield Accelerators

116   0   0.0 ( 0 )
 Added by Wei Hou Tan
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Beam-driven collinear wakefield accelerators (CWAs) that operate by using slow-wave structures or plasmas hold great promise toward reducing the size of contemporary accelerators. Sustainable acceleration of charged particles to high energies in the CWA relies on using field-generating relativistic electron bunches with a highly asymmetric peak current profile and a large energy chirp. A new approach to obtaining such bunches has been proposed and illustrated with the accelerator design supported by particle tracking simulations. It has been shown that the required particle distribution in the longitudinal phase space can be obtained without collimators, giving CWAs an opportunity for employment in applications requiring a high repetition rate of operation.



rate research

Read More

140 - S.-Y. Kim , K. Moon , M. Chung 2021
An active plasma lens focuses the beam in both the horizontal and vertical planes simultaneously using a magnetic field generated by a discharge current through the plasma. A beam size of 5--10 $mu$m can be achieved using an focusing gradient on the order of 100 T/m. The active plasma lens is therefore an attractive element for plasma wakefield acceleration, because an ultra-small size of the witness electron beam is required for injection into the plasma wakefield to minimize emittance growth and to enhance the capturing efficiency. When the driving beam and witness electron beam co-propagate through the active plasma lens, interactions between the driving and witness beams and the plasma must be considered. In this paper, through particle-in-cell simulations, we discuss the possibility of using an active plasma lens for the final focusing of the electron beam in the presence of driving proton bunches. The beam parameters for AWAKE Run 2 are taken as an example for this type of application. It is confirmed that the amplitude of the plasma wakefield excited by proton bunches remains the same even after propagation through the active plasma lens. The emittance of the witness electron beam increases rapidly in the plasma density ramp regions of the lens. Nevertheless, when the witness electron beam has a charge of 100 pC, emittance of 10 mm mrad, and bunch length of 60 $mu$m, its emittance growth is not significant along the active plasma lens. For small emittance, such as 2 mm mrad, the emittance growth is found to be strongly dependent on the plasma density.
Next-generation plasma-based accelerators can push electron beams to GeV energies within centimetre distances. The plasma, excited by a driver pulse, is indeed able to sustain huge electric fields that can efficiently accelerate a trailing witness bunch, which was experimentally demonstrated on multiple occasions. Thus, the main focus of the current research is being shifted towards achieving a high quality of the beam after the plasma acceleration. In this letter we present beam-driven plasma wakefield acceleration experiment, where initially preformed high-quality witness beam was accelerated inside the plasma and characterized. In this experiment the witness beam quality after the acceleration was maintained on high level, with $0.2%$ final energy spread and $3.8~mu m$ resulting normalized transverse emittance after the acceleration. In this article, for the first time to our knowledge, the emittance of the PWFA beam was directly measured.
We propose and demonstrate a novel method to produce few-femtosecond electron beam with relatively low timing jitter. In this method a relativistic electron beam is compressed from about 150 fs (rms) to about 7 fs (rms, upper limit) with the wakefield at THz frequency produced by a leading drive beam in a dielectric tube. By imprinting the energy chirp in a passive way, we demonstrate through laser-driven THz streaking technique that no additional timing jitter with respect to an external laser is introduced in this bunch compression process, a prominent advantage over the conventional method using radio-frequency bunchers. We expect that this passive bunching technique may enable new opportunities in many ultrashort-beam based advanced applications such as ultrafast electron diffraction and plasma wakefield acceleration.
98 - K.V. Lotov 2016
Drive particle beams in linear or weakly nonlinear regimes of the plasma wakefield accelerator quickly reach a radial equilibrium with the wakefield, which is described in detail for the first time. The equilibrium beam state and self-consistent wakefields are obtained by combining analytical relationships, numerical integration, and first-principle simulations. In the equilibrium state, the beam density is strongly peaked near the axis, the beam radius is constant along the beam, and longitudinal variation of the focusing strength is balanced by varying beam emittance. The transverse momentum distribution of beam particles depends on the observation radius and is neither separable, nor Gaussian.
Beam diagnostics is important to guarantee good quality of beam in particle accelerator. Both the electron and positron run in the tunnel in some modern electron positron colliders such as Circular Electron Positron Collider (CEPC) to be built and Beijing Electron Positron Collider II (BEPC II). To measure the electron and positron beams, picking up of these two different bunches in real time is of notable concern. Because the time interval between adjacent electron and positron bunches is quite small, for example, 6 ns in CEPC, high-speed switch electronics is required. This paper presents the prototype design of a high-speed radio frequency (RF) electronics that can pick up nanosecond positron-electron beam bunches with a switching time of less than 6 ns. Fast separation of electron and positron is achieved based on RF switches and precise delay adjustment of the controlling signals (~10 ps). Initial tests have been conducted in the laboratory to evaluate the performance of electronics, the results indicate that this circuit can successfully pick up the bunch signal within a time interval of 6 ns, which makes it possible to further measure the electron and position beams simultaneously.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا