We have observed the very low-mass Class 0 protostar IRAS 15398-3359 at scales ranging from 50 au to 1800 au, as part of the ALMA Large Program FAUST. We uncover a linear feature, visible in H2CO, SO, and C18O line emission, which extends from the source along a direction almost perpendicular to the known active outflow. Molecular line emission from H2CO, SO, SiO, and CH3OH further reveals an arc-like structure connected to the outer end of the linear feature and separated from the protostar, IRAS 15398-3359, by 1200 au. The arc-like structure is blue-shifted with respect to the systemic velocity. A velocity gradient of 1.2 km/s over 1200 au along the linear feature seen in the H2CO emission connects the protostar and the arc-like structure kinematically. SO, SiO, and CH3OH are known to trace shocks, and we interpret the arc-like structure as a relic shock region produced by an outflow previously launched by IRAS 15398-3359. The velocity gradient along the linear structure can be explained as relic outflow motion. The origins of the newly observed arc-like structure and extended linear feature are discussed in relation to turbulent motions within the protostellar core and episodic accretion events during the earliest stage of protostellar evolution.