No Arabic abstract
The cosmological constant $Lambda$ is usually interpreted as Dark Energy (DE) or modified gravity (MG). Here we propose instead that $Lambda$ corresponds to a boundary term in the action of classical General Relativity. The action is zero for a perfect fluid solution and this fixes $Lambda$ to the average density $rho$ and pressure $p$ inside a primordial causal boundary: $Lambda = 4pi G <rho+3p>$. This explains both why the observed value of $Lambda$ is related to the matter density today and also why other contributions to $Lambda$, such as DE or MG, do not produce cosmic expansion. Cosmic acceleration results from the repulsive boundary force that occurs when the expansion reaches the causal horizon. This universe is similar to the $Lambda$CDM universe, except on the largest observable scales, where we expect departures from homogeneity/isotropy, such as CMB anomalies and variations in cosmological parameters indicated by recent observations.
Self tuning is one of the few methods for dynamically cancelling a large cosmological constant and yet giving an accelerating universe. Its drawback is that it tends to screen all sources of energy density, including matter. We develop a model that tempers the self tuning so the dynamical scalar field still cancels an arbitrary cosmological constant, including the vacuum energy through any high energy phase transitions, without affecting the matter fields. The scalar-tensor gravitational action is simple, related to cubic Horndeski gravity, with a nonlinear derivative interaction plus a tadpole term. Applying shift symmetry and using the property of degeneracy of the field equations we find families of functions that admit de Sitter solutions with expansion rates that are independent of the magnitude of the cosmological constant and preserve radiation and matter dominated phases. That is, the method can deliver a standard cosmic history including current acceleration, despite the presence of a Planck scale cosmological constant.
We show that Dark Matter consisting of ultralight bosons in a Bose-Einstein condensate induces, via its quantum potential, a small positive cosmological constant which matches the observed value. This explains its origin and why the densities of Dark Matter and Dark Energy are approximately equal.
Theoretically, the running of the cosmological constant in the IR region is not ruled out. On the other hand, from the QFT viewpoint, the energy released due to the variation of the cosmological constant in the late universe cannot go to the matter sector. For this reason, the phenomenological bounds on such a running are not sufficiently restrictive. The situation can be different in the early universe when the gravitational field was sufficiently strong to provide an efficient creation of particles from the vacuum. We develop a framework for systematically exploring this ossibility. It is supposed that the running occurs in the epoch when the Dark Matter already decoupled and is expanding adiabatically, while baryons are approximately massless and can be abundantly created from vacuum due to the decay of vacuum energy. By using the handy model of Reduced Relativistic Gas for describing the Dark Matter, we consider the dynamics of both cosmic background and linear perturbations and evaluate the impact of the vacuum decay on the matter power spectrum and to the first CMB peak. Additionally, using the combined data of CMB+BAO+SNIa we find the best fit values for the free parameters of our model.
In second order perturbation theory different definitions are known of gauge invariant perturbations in single field inflationary models. Consequently the corresponding gauge invariant cubic actions do not have the same form. Here we show that the cubic action for one choice of gauge invariant variables is unique in the following sense: the action for any other, non-linearly related variable can be brought to the same bulk action, plus additional boundary terms. These boundary terms correspond to the choice of hypersurface and generate extra, disconnected contributions to the bispectrum. We also discuss uniqueness of the action with respect to conformal frames. When expressed in terms of the gauge invariant curvature perturbation on uniform field hypersurfaces the action for cosmological perturbations has a unique form, independent of the original Einstein or Jordan frame. Crucial is that the gauge invariant comoving curvature perturbation is frame independent, which makes it extremely helpful in showing the quantum equivalence of the two frames, and therefore in calculating quantum effects in nonminimally coupled theories such as Higss inflation.
We study dynamics of non-minimally coupled scalar field cosmological models with Higgs-like potentials and a negative cosmological constant. In these models the inflationary stage of the Universe evolution changes into a quasi-cyclic stage of the Universe evolution with oscillation behaviour of the Hubble parameter from positive to negative values. Depending on the initial conditions the Hubble parameter can perform either one or several cycles before to become negative forever.