Do you want to publish a course? Click here

Benchmarking Perturbation-based Saliency Maps for Explaining Atari Agents

87   0   0.0 ( 0 )
 Added by Tobias Huber
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recent years saw a plethora of work on explaining complex intelligent agents. One example is the development of several algorithms that generate saliency maps which show how much each pixel attributed to the agents decision. However, most evaluations of such saliency maps focus on image classification tasks. As far as we know, there is no work that thoroughly compares different saliency maps for Deep Reinforcement Learning agents. This paper compares four perturbation-based approaches to create saliency maps for Deep Reinforcement Learning agents trained on four different Atari 2600 games. All four approaches work by perturbing parts of the input and measuring how much this affects the agents output. The approaches are compared using three computational metrics: dependence on the learned parameters of the agent (sanity checks), faithfulness to the agents reasoning (input degradation), and run-time. In particular, during the sanity checks we find issues with two approaches and propose a solution to fix one of those issues.



rate research

Read More

We propose a new approach to visualize saliency maps for deep neural network models and apply it to deep reinforcement learning agents trained on Atari environments. Our method adds an attention module that we call FLS (Free Lunch Saliency) to the feature extractor from an established baseline (Mnih et al., 2015). This addition results in a trainable model that can produce saliency maps, i.e., visualizations of the importance of different parts of the input for the agents current decision making. We show experimentally that a network with an FLS module exhibits performance similar to the baseline (i.e., it is free, with no performance cost) and can be used as a drop-in replacement for reinforcement learning agents. We also design another feature extractor that scores slightly lower but provides higher-fidelity visualizations. In addition to attained scores, we report saliency metrics evaluated on the Atari-HEAD dataset of human gameplay.
Reproducibility in reinforcement learning is challenging: uncontrolled stochasticity from many sources, such as the learning algorithm, the learned policy, and the environment itself have led researchers to report the performance of learned agents using aggregate metrics of performance over multiple random seeds for a single environment. Unfortunately, there are still pernicious sources of variability in reinforcement learning agents that make reporting common summary statistics an unsound metric for performance. Our experiments demonstrate the variability of common agents used in the popular OpenAI Baselines repository. We make the case for reporting post-training agent performance as a distribution, rather than a point estimate.
Model-free reinforcement learning (RL) can be used to learn effective policies for complex tasks, such as Atari games, even from image observations. However, this typically requires very large amounts of interaction -- substantially more, in fact, than a human would need to learn the same games. How can people learn so quickly? Part of the answer may be that people can learn how the game works and predict which actions will lead to desirable outcomes. In this paper, we explore how video prediction models can similarly enable agents to solve Atari games with fewer interactions than model-free methods. We describe Simulated Policy Learning (SimPLe), a complete model-based deep RL algorithm based on video prediction models and present a comparison of several model architectures, including a novel architecture that yields the best results in our setting. Our experiments evaluate SimPLe on a range of Atari games in low data regime of 100k interactions between the agent and the environment, which corresponds to two hours of real-time play. In most games SimPLe outperforms state-of-the-art model-free algorithms, in some games by over an order of magnitude.
Reinforcement learning agents often forget details of the past, especially after delays or distractor tasks. Agents with common memory architectures struggle to recall and integrate across multiple timesteps of a past event, or even to recall the details of a single timestep that is followed by distractor tasks. To address these limitations, we propose a Hierarchical Transformer Memory (HTM), which helps agents to remember the past in detail. HTM stores memories by dividing the past into chunks, and recalls by first performing high-level attention over coarse summaries of the chunks, and then performing detailed attention within only the most relevant chunks. An agent with HTM can therefore mentally time-travel -- remember past events in detail without attending to all intervening events. We show that agents with HTM substantially outperform agents with other memory architectures at tasks requiring long-term recall, retention, or reasoning over memory. These include recalling where an object is hidden in a 3D environment, rapidly learning to navigate efficiently in a new neighborhood, and rapidly learning and retaining new object names. Agents with HTM can extrapolate to task sequences an order of magnitude longer than they were trained on, and can even generalize zero-shot from a meta-learning setting to maintaining knowledge across episodes. HTM improves agent sample efficiency, generalization, and generality (by solving tasks that previously required specialized architectures). Our work is a step towards agents that can learn, interact, and adapt in complex and temporally-extended environments.
Reinforcement learning has made great strides in recent years due to the success of methods using deep neural networks. However, such neural networks act as a black box, obscuring the inner workings. While reinforcement learning has the potential to solve unique problems, a lack of trust and understanding of reinforcement learning algorithms could prevent their widespread adoption. Here, we present a library that attaches a data scraper to deep reinforcement learning agents, acting as an observer, and then show how the data collected by the Atari Data Scraper can be used to understand and interpret deep reinforcement learning agents. The code for the Atari Data Scraper can be found here: https://github.com/IRLL/Atari-Data-Scraper

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا