Do you want to publish a course? Click here

Optimized Quantum Steering and Exceptional Points

121   0   0.0 ( 0 )
 Added by Parveen Kumar
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The state of a quantum system may be steered towards a predesignated target state, employing a sequence of weak $textit{blind}$ measurements (where the detectors readouts are traced out). Here we analyze the steering of a two-level system using the interplay of a system Hamiltonian and weak measurements, and show that $textit{any}$ pure or mixed state can be targeted. We show that the optimization of such a steering protocol is underlain by the presence of Liouvillian exceptional points. More specifically, for high purity target states, optimal steering implies purely relaxational dynamics marked by a second-order exceptional point, while for low purity target states, it implies an oscillatory approach to the target state. The phase transition between these two regimes is characterized by a third-order exceptional point.



rate research

Read More

The appearance of so-called exceptional points in the complex spectra of non-Hermitian systems is often associated with phenomena that contradict our physical intuition. One example of particular interest is the state-exchange process predicted for an adiabatic encircling of an exceptional point. In this work we analyse this and related processes for the generic system of two coupled oscillator modes with loss or gain. We identify a characteristic system evolution consisting of periods of quasi-stationarity interrupted by abrupt non-adiabatic transitions, and we present a qualitative and quantitative description of this switching behaviour by connecting the problem to the phenomenon of stability loss delay. This approach makes accurate predictions for the breakdown of the adiabatic theorem as well as the occurrence of chiral behavior observed previously in this context, and provides a general framework to model and understand quasi-adiabatic dynamical effects in non-Hermitian systems.
79 - C. Li , Z. Song 2020
We study coupled non-Hermitian Rice-Mele chains, which consist of Su-Schrieffer-Heeger (SSH) chain system with staggered on-site imaginary potentials. In two dimensional (2D) thermodynamic limit, the exceptional points (EPs) are shown to exhibit topological feature: EPs correspond to topological defects of a real auxiliary 2D vector field in k space, which is obtained from the Bloch states of the non-Hermitian Hamiltonian. As a topological invariant, the topological charges of EPs can be $pm$1/2, obtained by the winding number calculation. Remarkably, we find that such a topological characterization remains for a finite number of coupled chains, even a single chain, in which the momentum in one direction is discrete. It shows that the EPs in the quasi-1D system still exhibit topological characteristics and can be an abridged version for a 2D system with symmetry protected EPs that are robust in perturbations, which proves that topological invariants for a quasi-1D system can be extracted from the projection of the corresponding 2D limit system on it.
The fidelity susceptibility has been used to detect quantum phase transitions in the Hermitian quantum many-body systems over a decade, where the fidelity susceptibility density approaches $+infty$ in the thermodynamic limits. Here the fidelity susceptibility $chi$ is generalized to non-Hermitian quantum systems by taking the geometric structure of the Hilbert space into consideration. Instead of solving the metric equation of motion from scratch, we chose a gauge where the fidelities are composed of biorthogonal eigenstates and can be worked out algebraically or numerically when not on the exceptional point (EP). Due to the properties of the Hilbert space geometry at EP, we found that EP can be found when $chi$ approaches $-infty$. As examples, we investigate the simplest $mathcal{PT}$ symmetric $2times2$ Hamiltonian with a single tuning parameter and the non-Hermitian Su-Schriffer-Heeger model.
Exceptional points (EPs), at which both eigenvalues and eigenvectors coalesce, are ubiquitous and unique features of non-Hermitian systems. Second-order EPs are by far the most studied due to their abundance, requiring only the tuning of two real parameters, which is less than the three parameters needed to generically find ordinary Hermitian eigenvalue degeneracies. Higher-order EPs generically require more fine-tuning, and are thus assumed to play a much less prominent role. Here, however, we illuminate how physically relevant symmetries make higher-order EPs dramatically more abundant and conceptually richer. More saliently, third-order EPs generically require only two real tuning parameters in presence of either $PT$ symmetry or a generalized chiral symmetry. Remarkably, we find that these different symmetries yield topologically distinct types of EPs. We illustrate our findings in simple models, and show how third-order EPs with a generic $sim k^{1/3}$ dispersion are protected by PT-symmetry, while third-order EPs with a $sim k^{1/2}$ dispersion are protected by the chiral symmetry emerging in non-Hermitian Lieb lattice models. More generally, we identify stable, weak, and fragile aspects of symmetry-protected higher-order EPs, and tease out their concomitant phenomenology.
We identify a new kind of physically realizable exceptional point (EP) corresponding to degenerate coherent perfect absorption, in which two purely incoming solutions of the wave operator for electromagnetic or acoustic waves coalesce to a single state. Such non-hermitian degeneracies can occur at a real-valued frequency without any associated noise or non-linearity, in contrast to EPs in lasers. The absorption lineshape for the eigenchannel near the EP is quartic in frequency around its maximum in any dimension. In general, for the parameters at which an operator EP occurs, the associated scattering matrix does not have an EP. However, in one dimension, when the $S$-matrix does have a perfectly absorbing EP, it takes on a universal one-parameter form with degenerate values for all scattering coefficients. For absorbing disk resonators, these EPs give rise to chiral absorption: perfect absorption for only one sense of rotation of the input wave.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا