Do you want to publish a course? Click here

Multi-frequency study of large size radio galaxies 3C 35 and 3C 284

293   0   0.0 ( 0 )
 Added by Sabyasachi Pal Dr.
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report multi-frequency observations of large radio galaxies 3C 35 and 3C 284. The low-frequency observations were done with Giant Metrewave Radio Telescope starting from $sim$150 MHz, and the high-frequency observations were done with the Very Large Array. We have studied the radio morphology of these two sources at different frequencies. We present the spectral ageing map using two of the most widely used models, the Kardashev-Pacholczyk and Jaffe-Perola models. Another more realistic and complex Tribble model is also used. We also calculate the jet-power and the speed of the radio lobes of these galaxies. We check for whether any episodic jet activity is present or not in these galaxies and found no sign of such kind of activity.



rate research

Read More

125 - M. Orienti 2020
We report results on deep Jansky Very Large Array A-configuration observations at 22 GHz of the hotspots of the radio galaxies 3C227 and 3C445. Synchrotron emission in the optical on scales up to a few kpc was reported for the four hotspots. Our VLA observations point out the presence of unresolved regions with upper limit to their linear size of about 100 pc. This is the first time that such compact components in hotspots have been detected in a mini-sample, indicating that they are not a peculiar characteristic of a few individual hotspots. The polarization may reach values up to 70 per cent in compact (about 0.1 kpc scale) regions within the hotspot, indicating a highly ordered magnetic field with size up to a hundred parsecs. On larger scales, the average polarization of the hotspot component is about 30-45 per cent, suggesting the presence of a significant random field component, rather than an ordered magnetic field. This is further supported by the displacement between the peaks in polarized intensity and in total intensity images that is observed in all the four hotspots. The electric vector position angle is not constant, but changes arbitrarily in the central part of the hotspot regions, whereas it is usually perpendicular to the total intensity contours of the outermost edge of the hotspot structure, likely marking the large-scale shock front. The misalignment between X-ray and radio-to-optical emission suggests that the former is tracing the current particle acceleration, whereas the latter marks older shock fronts.
Recent analyses of the broad spectral energy distributions (SED) of extensive lobes of local radio-galaxies have confirmed the leptonic origin of their Fermi/LAT gamma-ray emission, significantly constraining the level of hadronic contribution. SED of distant (D > 125 Mpc) radio-galaxy lobes are currently limited to the radio and X-ray bands, hence give no information on the presence of non-thermal (NT) protons but are adequate to describe the properties of NT electrons. Modeling lobe radio and X-ray emission in 3C 98, Pictor A, DA 240, Cygnus A, 3C 326, and 3C 236, we fully determine the properties of intra-lobe NT electrons and estimate the level of the related gamma-ray emission from Compton scattering of the electrons off the superposed Cosmic Microwave Background, Extragalactic Background Light, and source-specific radiation fields.
Kinetic jet power estimates based exclusively on observed monochromatic radio luminosities are highly uncertain due to confounding variables and a lack of knowledge about some aspects of the physics of active galactic nuclei (AGNs). We propose a new methodology to calculate the jet powers of the largest, most powerful radio sources based on combinations of their size, lobe luminosity and shape of their radio spectrum; this approach avoids the uncertainties encountered by previous relationships. The outputs of our model are calibrated using hydrodynamical simulations and tested against independent X-ray inverse-Compton measurements. The jet powers and lobe magnetic field strengths of radio sources are found to be recovered using solely the lobe luminosity and spectral curvature, enabling the intrinsic properties of unresolved high-redshift sources to be inferred. By contrast, the radio source ages cannot be estimated without knowledge of the lobe volumes. The monochromatic lobe luminosity alone is incapable of accurately estimating the jet power or source age without knowledge of the lobe magnetic field strength and size respectively. We find that, on average, the lobes of the 3C radio sources have magnetic field strengths approximately a factor three lower than the equipartition value, inconsistent with equal energy in the particles and the fields at the 5$sigma$ level. The particle content of 3C radio lobes is discussed in the context of complementary observations; we do not find evidence favouring an energetically-dominant proton population.
We present the observational results of the Gamma-ray blazar, 3C 66A, at 2.3, 8.4, and 22 GHz at 4 epochs during 2004-05 with the VLBA. The resulting images show an overall core-jet structure extending roughly to the south with two intermediate breaks occurring in the region near the core. By model-fitting to the visibility data, the northmost component, which is also the brightest, is identified as the core according to its relatively flat spectrum and its compactness. As combined with some previous results to investigate the proper motions of the jet components, it is found the kinematics of 3C 66A is quite complicated with components of inward and outward, subluminal and superluminal motions all detected in the radio structure. The superluminal motions indicate strong Doppler boosting exists in the jet. The apparent inward motions of the innermost components last for at least 10 years and could not be caused by new-born components. The possible reason could be non-stationarity of the core due to opacity change.
We present a deep, low-frequency radio continuum study of the nearby Fanaroff--Riley class I (FR I) radio galaxy 3C 31 using a combination of LOw Frequency ARray (LOFAR; 30--85 and 115--178 MHz), Very Large Array (VLA; 290--420 MHz), Westerbork Synthesis Radio Telescope (WSRT; 609 MHz) and Giant Metre Radio Telescope (GMRT; 615 MHz) observations. Our new LOFAR 145-MHz map shows that 3C 31 has a largest physical size of $1.1$ Mpc in projection, which means 3C 31 now falls in the class of giant radio galaxies. We model the radio continuum intensities with advective cosmic-ray transport, evolving the cosmic-ray electron population and magnetic field strength in the tails as functions of distance to the nucleus. We find that if there is no in-situ particle acceleration in the tails, then decelerating flows are required that depend on radius $r$ as $vpropto r^{beta}$ ($betaapprox -1$). This then compensates for the strong adiabatic losses due to the lateral expansion of the tails. We are able to find self-consistent solutions in agreement with the entrainment model of Croston & Hardcastle, where the magnetic field provides $approx$$1/3$ of the pressure needed for equilibrium with the surrounding intra-cluster medium (ICM). We obtain an advective time-scale of $approx$$190$ Myr, which, if equated to the source age, would require an average expansion Mach number ${cal M} approx 5$ over the source lifetime. Dynamical arguments suggest that instead, either the outer tail material does not represent the oldest jet plasma or else the particle ages are underestimated due to the effects of particle acceleration on large scales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا