Do you want to publish a course? Click here

Mitigating the Position Bias of Transformer Models in Passage Re-Ranking

126   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Supervised machine learning models and their evaluation strongly depends on the quality of the underlying dataset. When we search for a relevant piece of information it may appear anywhere in a given passage. However, we observe a bias in the position of the correct answer in the text in two popular Question Answering datasets used for passage re-ranking. The excessive favoring of earlier positions inside passages is an unwanted artefact. This leads to three common Transformer-based re-ranking models to ignore relevant parts in unseen passages. More concerningly, as the evaluation set is taken from the same biased distribution, the models overfitting to that bias overestimate their true effectiveness. In this work we analyze position bias on datasets, the contextualized representations, and their effect on retrieval results. We propose a debiasing method for retrieval datasets. Our results show that a model trained on a position-biased dataset exhibits a significant decrease in re-ranking effectiveness when evaluated on a debiased dataset. We demonstrate that by mitigating the position bias, Transformer-based re-ranking models are equally effective on a biased and debiased dataset, as well as more effective in a transfer-learning setting between two differently biased datasets.



rate research

Read More

Most approaches for similar text retrieval and ranking with long natural language queries rely at some level on queries and responses having words in common with each other. Recent applications of transformer-based neural language models to text retrieval and ranking problems have been very promising, but still involve a two-step process in which result candidates are first obtained through bag-of-words-based approaches, and then reranked by a neural transformer. In this paper, we introduce novel approaches for effectively applying neural transformer models to similar text retrieval and ranking without an initial bag-of-words-based step. By eliminating the bag-of-words-based step, our approach is able to accurately retrieve and rank results even when they have no non-stopwords in common with the query. We accomplish this by using bidirectional encoder representations from transformers (BERT) to create vectorized representations of sentence-length texts, along with a vector nearest neighbor search index. We demonstrate both supervised and unsupervised means of using BERT to accomplish this task.
BERT-based information retrieval models are expensive, in both time (query latency) and computational resources (energy, hardware cost), making many of these models impractical especially under resource constraints. The reliance on a query encoder that only performs tokenization and on the pre-processing of passage representations at indexing, has allowed the recently proposed TILDE method to overcome the high query latency issue typical of BERT-based models. This however is at the expense of a lower effectiveness compared to other BERT-based re-rankers and dense retrievers. In addition, the original TILDE method is characterised by indexes with a very high memory footprint, as it expands each passage into the size of the BERT vocabulary. In this paper, we propose TILDEv2, a new model that stems from the original TILDE but that addresses its limitations. TILDEv2 relies on contextualized exact term matching with expanded passages. This requires to only store in the index the score of tokens that appear in the expanded passages (rather than all the vocabulary), thus producing indexes that are 99% smaller than those of TILDE. This matching mechanism also improves ranking effectiveness by 24%, without adding to the query latency. This makes TILDEv2 the state-of-the-art passage re-ranking method for CPU-only environments, capable of maintaining query latency below 100ms on commodity hardware.
Our work aimed at experimentally assessing the benefits of model ensembling within the context of neural methods for passage reranking. Starting from relatively standard neural models, we use a previous technique named Fast Geometric Ensembling to generate multiple model instances from particular training schedules, then focusing or attention on different types of approaches for combining the results from the multiple model instances (e.g., averaging the ranking scores, using fusion methods from the IR literature, or using supervised learning-to-rank). Tests with the MS-MARCO dataset show that model ensembling can indeed benefit the ranking quality, particularly with supervised learning-to-rank although also with unsupervised rank aggregation.
We propose a design pattern for tackling text ranking problems, dubbed Expando-Mono-Duo, that has been empirically validated for a number of ad hoc retrieval tasks in different domains. At the core, our design relies on pretrained sequence-to-sequence models within a standard multi-stage ranking architecture. Expando refers to the use of document expansion techniques to enrich keyword representations of texts prior to inverted indexing. Mono and Duo refer to components in a reranking pipeline based on a pointwise model and a pairwise model that rerank initial candidates retrieved using keyword search. We present experimental results from the MS MARCO passage and document ranking tasks, the TREC 2020 Deep Learning Track, and the TREC-COVID challenge that validate our design. In all these tasks, we achieve effectiveness that is at or near the state of the art, in some cases using a zero-shot approach that does not exploit any training data from the target task. To support replicability, implementations of our design pattern are open-sourced in the Pyserini IR toolkit and PyGaggle neural reranking library.
We present Covidex, a search engine that exploits the latest neural ranking models to provide information access to the COVID-19 Open Research Dataset curated by the Allen Institute for AI. Our system has been online and serving users since late March 2020. The Covidex is the user application component of our three-pronged strategy to develop technologies for helping domain experts tackle the ongoing global pandemic. In addition, we provide robust and easy-to-use keyword search infrastructure that exploits mature fusion-based methods as well as standalone neural ranking models that can be incorporated into other applications. These techniques have been evaluated in the ongoing TREC-COVID challenge: Our infrastructure and baselines have been adopted by many participants, including some of the highest-scoring runs in rounds 1, 2, and 3. In round 3, we report the highest-scoring run that takes advantage of previous training data and the second-highest fully automatic run.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا