No Arabic abstract
Modern solutions to the single image super-resolution (SISR) problem using deep neural networks aim not only at better performance accuracy but also at a lighter and computationally efficient model. To that end, recently, neural architecture search (NAS) approaches have shown some tremendous potential. Following the same underlying, in this paper, we suggest a novel trilevel NAS method that provides a better balance between different efficiency metrics and performance to solve SISR. Unlike available NAS, our search is more complete, and therefore it leads to an efficient, optimized, and compressed architecture. We innovatively introduce a trilevel search space modeling, i.e., hierarchical modeling on network-, cell-, and kernel-level structures. To make the search on trilevel spaces differentiable and efficient, we exploit a new sparsestmax technique that is excellent at generating sparse distributions of individual neural architecture candidates so that they can be better disentangled for the final selection from the enlarged search space. We further introduce the sorting technique to the sparsestmax relaxation for better network-level compression. The proposed NAS optimization additionally facilitates simultaneous search and training in a single phase, reducing search time and train time. Comprehensive evaluations on the benchmark datasets show our methods clear superiority over the state-of-the-art NAS in terms of a good trade-off between model size, performance, and efficiency.
Neural Architecture Search (NAS) has shown great potentials in automatically designing scalable network architectures for dense image predictions. However, existing NAS algorithms usually compromise on restricted search space and search on proxy task to meet the achievable computational demands. To allow as wide as possible network architectures and avoid the gap between target and proxy dataset, we propose a Densely Connected NAS (DCNAS) framework, which directly searches the optimal network structures for the multi-scale representations of visual information, over a large-scale target dataset. Specifically, by connecting cells with each other using learnable weights, we introduce a densely connected search space to cover an abundance of mainstream network designs. Moreover, by combining both path-level and channel-level sampling strategies, we design a fusion module to reduce the memory consumption of ample search space. We demonstrate that the architecture obtained from our DCNAS algorithm achieves state-of-the-art performances on public semantic image segmentation benchmarks, including 84.3% on Cityscapes, and 86.9% on PASCAL VOC 2012. We also retain leading performances when evaluating the architecture on the more challenging ADE20K and Pascal Context dataset.
Single image super-resolution task has witnessed great strides with the development of deep learning. However, most existing studies focus on building a more complex neural network with a massive number of layers, bringing heavy computational cost and memory storage. Recently, as Transformer yields brilliant results in NLP tasks, more and more researchers start to explore the application of Transformer in computer vision tasks. But with the heavy computational cost and high GPU memory occupation of the vision Transformer, the network can not be designed too deep. To address this problem, we propose a novel Efficient Super-Resolution Transformer (ESRT) for fast and accurate image super-resolution. ESRT is a hybrid Transformer where a CNN-based SR network is first designed in the front to extract deep features. Specifically, there are two backbones for formatting the ESRT: lightweight CNN backbone (LCB) and lightweight Transformer backbone (LTB). Among them, LCB is a lightweight SR network to extract deep SR features at a low computational cost by dynamically adjusting the size of the feature map. LTB is made up of an efficient Transformer (ET) with a small GPU memory occupation, which benefited from the novel efficient multi-head attention (EMHA). In EMHA, a feature split module (FSM) is proposed to split the long sequence into sub-segments and then these sub-segments are applied by attention operation. This module can significantly decrease the GPU memory occupation. Extensive experiments show that our ESRT achieves competitive results. Compared with the original Transformer which occupies 16057M GPU memory, the proposed ET only occupies 4191M GPU memory with better performance.
The single image super-resolution task is one of the most examined inverse problems in the past decade. In the recent years, Deep Neural Networks (DNNs) have shown superior performance over alternative methods when the acquisition process uses a fixed known downsampling kernel-typically a bicubic kernel. However, several recent works have shown that in practical scenarios, where the test data mismatch the training data (e.g. when the downsampling kernel is not the bicubic kernel or is not available at training), the leading DNN methods suffer from a huge performance drop. Inspired by the literature on generalized sampling, in this work we propose a method for improving the performance of DNNs that have been trained with a fixed kernel on observations acquired by other kernels. For a known kernel, we design a closed-form correction filter that modifies the low-resolution image to match one which is obtained by another kernel (e.g. bicubic), and thus improves the results of existing pre-trained DNNs. For an unknown kernel, we extend this idea and propose an algorithm for blind estimation of the required correction filter. We show that our approach outperforms other super-resolution methods, which are designed for general downsampling kernels.
Neural architecture search (NAS) typically consists of three main steps: training a super-network, training and evaluating sampled deep neural networks (DNNs), and training the discovered DNN. Most of the existing efforts speed up some steps at the cost of a significant slowdown of other steps or sacrificing the support of non-differentiable search metrics. The unbalanced reduction in the time spent per step limits the total search time reduction, and the inability to support non-differentiable search metrics limits the performance of discovered DNNs. In this paper, we present NetAdaptV2 with three innovations to better balance the time spent for each step while supporting non-differentiable search metrics. First, we propose channel-level bypass connections that merge network depth and layer width into a single search dimension to reduce the time for training and evaluating sampled DNNs. Second, ordered dropout is proposed to train multiple DNNs in a single forward-backward pass to decrease the time for training a super-network. Third, we propose the multi-layer coordinate descent optimizer that considers the interplay of multiple layers in each iteration of optimization to improve the performance of discovered DNNs while supporting non-differentiable search metrics. With these innovations, NetAdaptV2 reduces the total search time by up to $5.8times$ on ImageNet and $2.4times$ on NYU Depth V2, respectively, and discovers DNNs with better accuracy-latency/accuracy-MAC trade-offs than state-of-the-art NAS works. Moreover, the discovered DNN outperforms NAS-discovered MobileNetV3 by 1.8% higher top-1 accuracy with the same latency. The project website is http://netadapt.mit.edu.
Recently, much attention has been spent on neural architecture search (NAS) approaches, which often outperform manually designed architectures on highlevel vision tasks. Inspired by this, we attempt to leverage NAS technique to automatically design efficient network architectures for low-level image restoration tasks. In this paper, we propose a memory-efficient hierarchical NAS HiNAS (HiNAS) and apply to two such tasks: image denoising and image super-resolution. HiNAS adopts gradient based search strategies and builds an flexible hierarchical search space, including inner search space and outer search space, which in charge of designing cell architectures and deciding cell widths, respectively. For inner search space, we propose layerwise architecture sharing strategy (LWAS), resulting in more flexible architectures and better performance. For outer search space, we propose cell sharing strategy to save memory, and considerably accelerate the search speed. The proposed HiNAS is both memory and computation efficient. With a single GTX1080Ti GPU, it takes only about 1 hour for searching for denoising network on BSD 500 and 3.5 hours for searching for the super-resolution structure on DIV2K. Experimental results show that the architectures found by HiNAS have fewer parameters and enjoy a faster inference speed, while achieving highly competitive performance compared with state-of-the-art methods.