The electron spectrum in a uniform nanowire with a hexagonal cross-section is calculated by means of a numerical diagonalization of the effective-mass Hamiltonian. Two basis sets are utilized. The wave-functions of low-lying states are calculated and visualized. The approach has an advantage over mesh methods based on finite-differences (or finite-elements) schemes: non-physical solutions do not arise. Our scheme can be easily generalized to the case of multi-band (Luttinger or Kane) ${bf k}cdot{bf p}$ Hamiltonians. The external fields (electrical, magnetic or strain) can be consistently introduced into the problem as well.