Do you want to publish a course? Click here

Reflection Modeling of the Black Hole Binary 4U~1630$-$47: the Disk Density and Returning Radiation

82   0   0.0 ( 0 )
 Added by Riley Connors
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the analysis of X-ray observations of the black hole binary 4U~1630$-$47 using relativistic reflection spectroscopy. We use archival data from the RXTE, Swift, and NuSTAR observatories, taken during different outbursts of the source between $1998$ and $2015$. Our modeling includes two relatively new advances in modern reflection codes: high-density disks, and returning thermal disk radiation. Accretion disks around stellar-mass black holes are expected to have densities well above the standard value assumed in traditional reflection models (i.e., $n_{rm e}sim10^{15}~{rm cm^{-3}}$). New high-density reflection models have important implications in the determination of disk truncation (i.e., the disk inner radius). This is because one must retain self-consistency in the irradiating flux and corresponding disk ionization state, which is a function of disk density and system geometry. We find the disk density is $n_{rm e}ge10^{20}~{rm cm^{-3}}$ across all spectral states. This density, combined with our constraints on the ionization state of the material, implies an irradiating flux impinging on the disk that is consistent with the expected theoretical estimates. Returning thermal disk radiation -- the fraction of disk photons which bend back to the disk producing additional reflection components -- is expected predominantly in the soft state. We show that returning radiation models indeed provide a better fit to the soft state data, reinforcing previous results which show that in the soft state the irradiating continuum may be blackbody emission from the disk itself.



rate research

Read More

We report the results from an X-ray and near-infrared observation of the Galactic black hole binary 4U 1630--47 in the very high state, performed with {it Suzaku} and IRSF around the peak of the 2012 September-October outburst. The X-ray spectrum is approximated by a steep power law, with photon index of 3.2, identifying the source as being in the very high state. A more detailed fit shows that the X-ray continuum is well described by a multi-color disc, together with thermal and non-thermal Comptonization. The inner disc appears slightly truncated by comparison with a previous high/soft state of this source, even taking into account energetic coupling between the disc and corona, although there are uncertainties due to the dust scattering correction. The near-infrared fluxes are higher than the extrapolated disc model, showing that there is a contribution from irradiation in the outer disk and/or the companion star at these wavelengths. Our X-ray spectra do not show the Doppler shifted iron emission lines indicating a baryonic jet which were seen four days previously in an XMM-Newton observation, despite the source being in a similar state. There are also no significant absorption lines from highly ionized irons as are seen in the previous high/soft state data. We show that the increased source luminosity is not enough on its own to make the wind so highly ionized as to be undetectable. This shows that the disc wind has changed in terms of its launch radius and/or density compared to the high/soft state.
85 - Mayukh Pahari 2018
We present the X-ray spectral and timing analysis of the transient black hole X-ray binary 4U 1630-47, observed with the AstroSat, Chandra and MAXI space missions during its soft X-ray outburst in 2016. The outburst, from the rising phase until the peak, is neither detected in hard X-rays (15-50 keV) by the Swift/BAT nor in radio. Such non-detection along with the source behavior in the hardness-intensity and color-color diagrams obtained using MAXI data confirm that both Chandra and AstroSat observations were performed during the high soft spectral state. The High Energy Grating (HEG) spectrum from the Chandra high-energy transmission grating spectrometer (HETGS) shows two strong, moderately blueshifted absorption lines at 6.705$_{-0.002}^{+0.002}$ keV and 6.974$_{-0.003}^{+0.004}$ keV, which are produced by Fe XXV and Fe XXVI in a low-velocity ionized disk wind. The corresponding outflow velocity is determined to be 366$pm$56 km/s. Separate spectral fits of Chandra/HEG, AstroSat/SXT+LAXPC and Chandra/HEG + AstroSat/SXT+LAXPC data show that the broadband continuum can be well described with a relativistic disk-blackbody model, with the disk flux fraction of $sim 0.97$. Based on the best-fit continuum spectral modeling of Chandra, AstroSat and Chandra+AstroSat joint spectra and using the Markov Chain Monte Carlo simulations, we constrain the spectral hardening factor at 1.56$^{+0.14}_{-0.06}$ and the dimensionless black hole spin parameter at 0.92 $pm$ 0.04 within the 99.7% confidence interval. Our conclusion of a rapidly-spinning black hole in 4U 1630-47 using the continuum spectrum method is in agreement with a previous finding applying the reflection spectral fitting method.
Accreting black holes are known to power relativistic jets, both in stellar-mass binary systems and at the centres of galaxies. The power carried away by the jets, and hence the feedback they provide to their surroundings, depends strongly on their composition. Jets containing a baryonic component should carry significantly more energy than electron-positron jets. While energetic considerations and circular polarisation measurements have provided conflicting circumstantial evidence for the presence or absence of baryons, the only system in which baryons have been unequivocally detected in the jets is the X-ray binary SS 433. Here we report the detection of Doppler-shifted X-ray emission lines from a more typical black hole candidate X-ray binary, 4U1630-47, coincident with the reappearance of radio emission from the jets of the source. We argue that these lines arise in a jet with velocity 0.66c, thereby establishing the presence of baryons in the jet. Such baryonic jets are more likely to be powered by the accretion disc rather than the spin of the black hole, and if the baryons can be accelerated to relativistic speeds, should be strong sources of gamma rays and neutrino emission.
Recent XMM-Newton observations of the black-hole candidate 4U 1630-47 during the 2012 outburst revealed three relativistically Doppler-shifted emission lines that were interpreted as arising from baryonic matter in the jet of this source. Here we reanalyse those data and find an alternative model that, with less free parameters than the model with Doppler-shifted emission lines, fits the data well. In our model we allow the abundance of S and Fe in the interstellar material along the line of sight to the source to be non solar. Among other things, this significantly impacts the emission predicted by the model at around 7.1 keV, where the edge of neutral Fe appears, and renders the lines unnecessary. The fits to all the 2012 XMM-Newton observations of this source require a moderately broad emission line at around 7 keV plus several absorption lines and edges due to highly ionised Fe and Ni, which reveal the presence of a highly-ionised absorber close to the source. Finally, our model also fits well the observations in which the lines were detected when we apply the most recent calibration files, whereas the model with the three Doppler-shifted emission lines does not.
We explore the accretion properties of the black hole X-ray binary j1550 during its outbursts in 1998/99 and 2000. We model the disk, corona, and reflection components of X-ray spectra taken with the {it Rossi X-ray Timing Explorer} (rxte), using the {tt relxill} suite of reflection models. The key result of our modeling is that the reflection spectrum in the very soft state is best explained by disk self-irradiation, i.e., photons from the inner disk are bent by the strong gravity of the black hole, and reflected off the disk surface. This is the first known detection of thermal disk radiation reflecting off the inner disk. There is also an apparent absorption line at $sim6.9$ keV which may be evidence of an ionized disk wind. The coronal electron temperature ($kT_{rm e}$) is, as expected, lower in the brighter outburst of 1998/99, explained qualitatively by more efficient coronal cooling due to irradiating disk photons. The disk inner radius is consistent with being within a few times the innermost stable circular orbit (ISCO) throughout the bright-hard-to-soft states (10s of $r_{rm g}$ in gravitational units). The disk inclination is low during the hard state, disagreeing with the binary inclination value, and very close to $90^{circ}$ in the soft state, recovering to a lower value when adopting a blackbody spectrum as the irradiating continuum.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا