There has been work on exploiting polynomial approximation to solve distributed nonconvex optimization problems involving univariate objectives. This idea facilitates arbitrarily precise global optimization without requiring local evaluations of gradients at every iteration. Nonetheless, there remains a gap between existing theoretical guarantees and diverse practical requirements for dependability, notably privacy preservation and robustness to network imperfections (e.g., time-varying directed communication and asynchrony). To fill this gap and keep the above strengths, we propose a Dependable Chebyshev-Proxy-based distributed Optimization Algorithm (D-CPOA). Specifically, to ensure both accuracy of solutions and privacy of local objectives, a new privacy-preserving mechanism is designed. This mechanism leverages the randomness in blockwise insertions of perturbed vector states and hence provides an improved privacy guarantee compared to the literature in terms of ($alpha,beta$)-data-privacy. Furthermore, to gain robustness to various network imperfections, we use the push-sum consensus protocol as a backbone, discuss its specific enhancements, and evaluate the performance of the proposed algorithm accordingly. Thanks to the linear consensus-based structure of iterations, we avoid the privacy-accuracy trade-off and the bother of selecting appropriate step-sizes in different settings. We provide rigorous analysis of the accuracy, dependability and complexity. It is shown that the advantages brought by the idea of polynomial approximation are maintained when all the above requirements exist. Simulations demonstrate the effectiveness of the developed algorithm.