Do you want to publish a course? Click here

Modeling and Analysis of Three Properties of Mobile Interactive Systems Based on Variable Petri Nets

155   0   0.0 ( 0 )
 Added by Ru Yang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Due to the mobility and frequent disconnections, the correctness of mobile interaction systems, such as mobile robot systems and mobile payment systems, are often difficult to analyze. This paper introduces three critical properties of systems, called system connectivity, interaction soundness and data validity, and presents a related modeling and analysis method, based on a kind of Petri nets called VPN. For a given system, a model including component nets and interaction structure nets is constructed by using VPNs. The component net describes the internal process of each component, while the interaction structure net reflects the dynamic interaction between components. Based on this model, three properties are defined and analyzed. The case study of a practical mobile payment system shows the effectiveness of the proposed method.



rate research

Read More

168 - Chao Gu , Ziyue Ma , Zhiwu Li 2020
This paper proposes a semi-structural approach to verify the nonblockingness of a Petri net. We construct a structure, called minimax basis reachability graph (minimax-BRG): it provides an abstract description of the reachability set of a net while preserving all information needed to test if the net is blocking. We prove that a bounded deadlock-free Petri net is nonblocking if and only if its minimax-BRG is unobstructed, which can be verified by solving a set of integer constraints and then examining the minimax-BRG. For Petri nets that are not deadlock-free, one needs to determine the set of deadlock markings. This can be done with an approach based on the computation of maximal implicit firing sequences enabled by the markings in the minimax-BRG. The approach we developed does not require the construction of the reachability graph and has wide applicability.
In the early two-thousands, Recursive Petri nets have been introduced in order to model distributed planning of multi-agent systems for which counters and recursivity were necessary. Although Recursive Petri nets strictly extend Petri nets and context-free grammars, most of the usual problems (reachability, coverability, finiteness, boundedness and termination) were known to be solvable by using non-primitive recursive algorithms. For almost all other extended Petri nets models containing a stack, the complexity of coverability and termination are unknown or strictly larger than EXPSPACE. In contrast, we establish here that for Recursive Petri nets, the coverability, termination, boundedness and finiteness problems are EXPSPACE-complete as for Petri nets. From an expressiveness point of view, we show that coverability languages of Recursive Petri nets strictly include the union of coverability languages of Petri nets and context-free languages. Thus we get a more powerful model than Petri net for free.
Automated verification of living organism models allows us to gain previously unknown knowledge about underlying biological processes. In this paper, we show the benefits to use parametric time Petri nets in order to analyze precisely the dynamic behavior of biological oscillatory systems. In particular, we focus on the resilience properties of such systems. This notion is crucial to understand the behavior of biological systems (e.g. the mammalian circadian rhythm) that are reactive and adaptive enough to endorse major changes in their environment (e.g. jet-lags, day-night alternating work-time). We formalize these properties through parametric TCTL and demonstrate how changes of the environmental conditions can be tackled to guarantee the resilience of living organisms. In particular, we are able to discuss the influence of various perturbations, e.g. artificial jet-lag or components knock-out, with regard to quantitative delays. This analysis is crucial when it comes to model elicitation for dynamic biological systems. We demonstrate the applicability of this technique using a simplified model of circadian clock.
55 - Zhe Xu 2020
Autonomous systems embedded with machine learning modules often rely on deep neural networks for classifying different objects of interest in the environment or different actions or strategies to take for the system. Due to the non-linearity and high-dimensionality of deep neural networks, the interpretability of the autonomous systems is compromised. Besides, the machine learning methods in autonomous systems are mostly data-intensive and lack commonsense knowledge and reasoning that are natural to humans. In this paper, we propose the framework of temporal logic classifier-in-the-loop systems. The temporal logic classifiers can output different actions to take for an autonomous system based on the environment, such that the behavior of the autonomous system can satisfy a given temporal logic specification. Our approach is robust and provably-correct, as we can prove that the behavior of the autonomous system can satisfy a given temporal logic specification in the presence of (bounded) disturbances.
We consider approaches for causal semantics of Petri nets, explicitly representing dependencies between transition occurrences. For one-safe nets or condition/event-systems, the notion of process as defined by Carl Adam Petri provides a notion of a run of a system where causal dependencies are reflected in terms of a partial order. A well-known problem is how to generalise this notion for nets where places may carry several tokens. Goltz and Reisig have defined such a generalisation by distinguishing tokens according to their causal history. However, this so-called individual token interpretation is often considered too detailed. A number of approaches have tackled the problem of defining a more abstract notion of process, thereby obtaining a so-called collective token interpretation. Here we give a short overview on these attempts and then identify a subclass of Petri nets, called structural conflict nets, where the interplay between conflict and concurrency due to token multiplicity does not occur. For this subclass, we define abstract processes as equivalence classes of Goltz-Reisig processes. We justify this approach by showing that we obtain exactly one maximal abstract process if and only if the underlying net is conflict-free with respect to a canonical notion of conflict.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا