Do you want to publish a course? Click here

Differentiable Nonparametric Belief Propagation

61   0   0.0 ( 0 )
 Added by Anthony Opipari
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a differentiable approach to learn the probabilistic factors used for inference by a nonparametric belief propagation algorithm. Existing nonparametric belief propagation methods rely on domain-specific features encoded in the probabilistic factors of a graphical model. In this work, we replace each crafted factor with a differentiable neural network enabling the factors to be learned using an efficient optimization routine from labeled data. By combining differentiable neural networks with an efficient belief propagation algorithm, our method learns to maintain a set of marginal posterior samples using end-to-end training. We evaluate our differentiable nonparametric belief propagation (DNBP) method on a set of articulated pose tracking tasks and compare performance with a recurrent neural network. Results from this comparison demonstrate the effectiveness of using learned factors for tracking and suggest the practical advantage over hand-crafted approaches. The project webpage is available at: progress.eecs.umich.edu/projects/dnbp.

rate research

Read More

In this paper, we use belief-propagation techniques to develop fast algorithms for image inpainting. Unlike traditional gradient-based approaches, which may require many iterations to converge, our techniques achieve competitive results after only a few iterations. On the other hand, while belief-propagation techniques are often unable to deal with high-order models due to the explosion in the size of messages, we avoid this problem by approximating our high-order prior model using a Gaussian mixture. By using such an approximation, we are able to inpaint images quickly while at the same time retaining good visual results.
We propose a nonparametric generalization of belief propagation, Kernel Belief Propagation (KBP), for pairwise Markov random fields. Messages are represented as functions in a reproducing kernel Hilbert space (RKHS), and message updates are simple linear operations in the RKHS. KBP makes none of the assumptions commonly required in classical BP algorithms: the variables need not arise from a finite domain or a Gaussian distribution, nor must their relations take any particular parametric form. Rather, the relations between variables are represented implicitly, and are learned nonparametrically from training data. KBP has the advantage that it may be used on any domain where kernels are defined (Rd, strings, groups), even where explicit parametric models are not known, or closed form expressions for the BP updates do not exist. The computational cost of message updates in KBP is polynomial in the training data size. We also propose a constant time approximate message update procedure by representing messages using a small number of basis functions. In experiments, we apply KBP to image denoising, depth prediction from still images, and protein configuration prediction: KBP is faster than competing classical and nonparametric approaches (by orders of magnitude, in some cases), while providing significantly more accurate results.
Learned neural solvers have successfully been used to solve combinatorial optimization and decision problems. More general counting variants of these problems, however, are still largely solved with hand-crafted solvers. To bridge this gap, we introduce belief propagation neural networks (BPNNs), a class of parameterized operators that operate on factor graphs and generalize Belief Propagation (BP). In its strictest form, a BPNN layer (BPNN-D) is a learned iterative operator that provably maintains many of the desirable properties of BP for any choice of the parameters. Empirically, we show that by training BPNN-D learns to perform the task better than the original BP: it converges 1.7x faster on Ising models while providing tighter bounds. On challenging model counting problems, BPNNs compute estimates 100s of times faster than state-of-the-art handcrafted methods, while returning an estimate of comparable quality.
Inference in continuous label Markov random fields is a challenging task. We use particle belief propagation (PBP) for solving the inference problem in continuous label space. Sampling particles from the belief distribution is typically done by using Metropolis-Hastings Markov chain Monte Carlo methods which involves sampling from a proposal distribution. This proposal distribution has to be carefully designed depending on the particular model and input data to achieve fast convergence. We propose to avoid dependence on a proposal distribution by introducing a slice sampling based PBP algorithm. The proposed approach shows superior convergence performance on an image denoising toy example. Our findings are validated on a challenging relational 2D feature tracking application.
Fast covariance calculation is required both for SLAM (e.g.~in order to solve data association) and for evaluating the information-theoretic term for different candidate actions in belief space planning (BSP). In this paper we make two primary contributions. First, we develop a novel general-purpose incremental covariance update technique, which efficiently recovers specific covariance entries after any change in the inference problem, such as introduction of new observations/variables or re-linearization of the state vector. Our approach is shown to recover them faster than other state-of-the-art methods. Second, we present a computationally efficient approach for BSP in high-dimensional state spaces, leveraging our incremental covariance update method. State of the art BSP approaches perform belief propagation for each candidate action and then evaluate an objective function that typically includes an information-theoretic term, such as entropy or information gain. Yet, candidate actions often have similar parts (e.g. common trajectory parts), which are however evaluated separately for each candidate. Moreover, calculating the information-theoretic term involves a costly determinant computation of the entire information (covariance) matrix which is O(n^3) with n being dimension of the state or costly Schur complement operations if only marginal posterior covariance of certain variables is of interest. Our approach, rAMDL-Tree, extends our previous BSP method rAMDL, by exploiting incremental covariance calculation and performing calculation re-use between common parts of non-myopic candidate actions, such that these parts are evaluated only once, in contrast to existing approaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا