Magnetic field-induced thermal emission tuning of InSb-based metamaterials in the terahertz frequency regime


Abstract in English

This work theoretically and analytically demonstrates the magnetic field-induced spectral radiative properties of photonic metamaterials incorporating both Indium Antimonide (InSb) and Tungsten (W) in the terahertz (THz) frequency regime. We have varied multiple factors of the nanostructures, including composite materials, layer thicknesses and surface grating fill factors, which impact the light-matter interactions and in turn modify the thermal emission of the metamaterials. We have proposed and validated a method for determining the spectral properties of InSb under an applied direct current (DC) magnetic field, and have employed this method to analyze how these properties can be dynamically tuned by modulating the magnitude of the field. For the first time, we have designed an InSb-W metamaterial exhibiting unity narrowband emission which can serve as an emitter for wavelengths around 55 $mu$m (approximately 5.5 THz). Additionally, the narrowband emission of this metamaterial can be magnetically tuned in both bandwidth and peak wavelength with a normal emissivity close to unity.

Download