Hybridization between $f$ electrons and conduction bands ($c$-$f$ hybridization) is a driving force for many unusual phenomena. To provide insight into it, systematic studies of CeCoIn$_5$ heavy fermion superconductor have been performed by angle-resolved photoemission spectroscopy (ARPES) in a large angular range at temperature of $T=6$ K. The used photon energy of 122 eV corresponds to Ce $4d$-$4f$ resonance. Calculations carried out with relativistic multiple scattering Korringa-Kohn-Rostoker method and one-step model of photoemission yielded realistic simulation of the ARPES spectra indicating that Ce-In surface termination prevails. Surface states, which have been identified in the calculations, contribute significantly to the spectra. Effects of the hybridization strongly depend on wave vector. They include a dispersion of heavy electrons and bands gaining $f$-electron character when approaching Fermi energy. We have also observed a considerable variation of $f$-electron spectral weight at $E_F$, which is normally determined by both matrix element effects and wave vector dependent $c$-$f$ hybridization. Fermi surface scans covering a few Brillouin zones revealed large matrix element effects. A symmetrization of experimental Fermi surface, which reduces matrix element contribution, yielded a specific variation of $4f$-electron enhanced spectral intensity at $E_F$ around $bar{Gamma}$ and $bar{M}$ points. Tight-binding approximation calculations for Ce-In plane provided the same universal distribution of $4f$-electron density for a range of values of the parameters used in the model.