Do you want to publish a course? Click here

Verification and Reachability Analysis of Fractional-Order Differential Equations Using Interval Analysis

63   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Interval approaches for the reachability analysis of initial value problems for sets of classical ordinary differential equations have been investigated and implemented by many researchers during the last decades. However, there exist numerous applications in computational science and engineering, where continuous-time system dynamics cannot be described adequately by integer-order differential equations. Especially in cases in which long-term memory effects are observed, fractional-order system representations are promising to describe the dynamics, on the one hand, with sufficient accuracy and, on the other hand, to limit the number of required state variables and parameters to a reasonable amount. Real-life applications for such fractional-order models can, among others, be found in the field of electrochemistry, where methods for impedance spectroscopy are typically used to identify fractional-order models for the charging/discharging behavior of batteries or for the dynamic relation between voltage and current in fuel cell systems if operated in a non-stationary state. This paper aims at presenting an iterative method for reachability analysis of fractional-order systems that is based on an interval arithmetic extension of Mittag-Leffler functions. An illustrating example, inspired by a low-order model of battery systems concludes this contribution.



rate research

Read More

We present an algorithm for data-driven reachability analysis that estimates finite-horizon forward reachable sets for general nonlinear systems using level sets of a certain class of polynomials known as Christoffel functions. The level sets of Christoffel functions are known empirically to provide good approximations to the support of probability distributions: the algorithm uses this property for reachability analysis by solving a probabilistic relaxation of the reachable set computation problem. We also provide a guarantee that the output of the algorithm is an accurate reachable set approximation in a probabilistic sense, provided that a certain sample size is attained. We also investigate three numerical examples to demonstrate the algorithms capabilities, such as providing non-convex reachable set approximations and detecting holes in the reachable set.
Ellipsoids are a common representation for reachability analysis because they are closed under affine maps and allow conservative approximation of Minkowski sums; this enables one to incorporate uncertainty and linearization error in a dynamical system by exapnding the size of the reachable set. Zonotopes, a type of symmetric, convex polytope, are similarly frequently used due to efficient numerical implementation of affine maps and exact Minkowski sums. Both of these representations also enable efficient, convex collision detection for fault detection or formal verification tasks, wherein one checks if the reachable set of a system collides (i.e., intersects) with an unsafe set. However, both representations often result in conservative representations for reachable sets of arbitrary systems, and neither is closed under intersection. Recently, constrained zonotopes and constrained polynomial zonotopes have been shown to overcome some of these conservatism challenges, and are closed under intersection. However, constrained zonotopes can not represent shapes with smooth boundaries such as ellipsoids, and constrained polynomial zonotopes can require solving a non-convex program for collision checking (i.e., fault detection). This paper introduces ellipsotopes, a set representation that is closed under affine maps, Minkowski sums, and intersections. Ellipsotopes combine the advantages of ellipsoids and zonotopes, and enable convex collision checking at the expense of more conservative reachable sets than constrained polynomial zonotopes. The utility of this representation is demonstrated on several examples.
Reachable set computation is an important technique for the verification of safety properties of dynamical systems. In this paper, we investigate reachable set computation for discrete nonlinear systems based on parallelotope bundles. The algorithm relies on computing an upper bound on the supremum of a nonlinear function over a rectangular domain, which has been traditionally done using Bernstein polynomials. We strive to remove the manual step of parallelotope template selection to make the method fully automatic. Furthermore, we show that changing templates dynamically during computations cans improve accuracy. To this end, we investigate two techniques for generating the template directions. The first technique approximates the dynamics as a linear transformation and generates templates using this linear transformation. The second technique uses Principal Component Analysis (PCA) of sample trajectories for generating templates. We have implemented our approach in a Python-based tool called Kaa and improve its performance by two main enhancements. The tool is modular and use two types of global optimization solvers, the first using Bernstein polynomials and the second using NASAs Kodiak nonlinear optimization library. Second, we leverage the natural parallelism of the reachability algorithm and parallelize the Kaa implementation. We demonstrate the improved accuracy of our approach on several standard nonlinear benchmark systems.
81 - Chao Gu , Ziyue Ma , Zhiwu Li 2021
In this paper, we study the problem of non-blockingness verification by tapping into the basis reachability graph (BRG). Non-blockingness is a property that ensures that all pre-specified tasks can be completed, which is a mandatory requirement during the system design stage. In this paper we develop a condition of transition partition of a given net such that the corresponding conflict-increase BRG contains sufficient information on verifying non-blockingness of its corresponding Petri net. Thanks to the compactness of the BRG, our approach possesses practical efficiency since the exhaustive enumeration of the state space can be avoided. In particular, our method does not require that the net is deadlock-free.
In this paper, a fractional derivative with short-term memory properties is defined, which can be viewed as an extension of Caputo fractional derivative. Then, some properties of the short memory fractional derivative are discussed. Also, a comparison theorem for a class of short memory fractional systems is shown, via which some relationship between short memory fractional systems and Caputo fractional systems can be established. By applying the comparison theorem and Lyapunov direct method, some sufficient criteria are obtained, which can ensure the asymptotic stability of some short memory fractional equations. Moreover, a special result is presented, by which the stability of some special systems can be judged directly. Finally, three examples are provided to demonstrate the effectiveness of the main results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا