Do you want to publish a course? Click here

Varieties of minimal rational tangents of unbendable rational curves subordinate to contact structures

110   0   0.0 ( 0 )
 Added by Jun-Muk Hwang
 Publication date 2021
  fields
and research's language is English
 Authors Jun-Muk Hwang




Ask ChatGPT about the research

A nonsingular rational curve $C$ in a complex manifold $X$ whose normal bundle is isomorphic to $${mathcal O}_{{mathbb P}^1}(1)^{oplus p} oplus {mathcal O}_{{mathbb P}^1}^{oplus q}$$ for some nonnegative integers $p$ and $q$ is called an unbendable rational curve on $X$. Associated with it is the variety of minimal rational tangents (VMRT) at a point $x in C,$ which is the germ of submanifolds ${mathcal C}^C_x subset {mathbb P} T_x X$ consisting of tangent directions of small deformations of $C$ fixing $x$. Assuming that there exists a distribution $D subset TX$ such that all small deformations of $C$ are tangent to $D$, one asks what kind of submanifolds of projective space can be realized as the VMRT ${mathcal C}^C_x subset {mathbb P} D_x$. When $D subset TX$ is a contact distribution, a well-known necessary condition is that ${mathcal C}_x^C$ should be Legendrian with respect to the induced contact structure on ${mathbb P} D_x$. We prove that this is also a sufficient condition: we construct a complex manifold $X$ with a contact structure $D subset TX$ and an unbendable rational curve $C subset X$ such that all small deformations of $C$ are tangent to $D$ and the VMRT ${mathcal C}^C_x subset {mathbb P} D_x$ at some point $xin C$ is projectively isomorphic to an arbitrarily given Legendrian submanifold. Our construction uses the geometry of contact lines on the Heisenberg group and a technical ingredient is the symplectic geometry of distributions the study of which has originated from geometric control theory.



rate research

Read More

203 - Jun-Muk Hwang 2015
We give an introduction to the theory of varieties of minimal rational tangents, emphasizing its aspect as a fusion of algebraic geometry and differential geometry, more specifically, a fusion of Mori geometry of minimal rational curves and Cartan geometry of cone structures.
109 - Jun-Muk Hwang , Qifeng Li 2021
We study unbendable rational curves, i.e., nonsingular rational curves in a complex manifold of dimension $n$ with normal bundles isomorphic to $mathcal{O}_{mathbb{P}^1}(1)^{oplus p} oplus mathcal{O}_{mathbb{P}^1}^{oplus (n-1-p)}$ for some nonnegative integer $p$. Well-known examples arise from algebraic geometry as general minimal rational curves of uniruled projective manifolds. After describing the relations between the differential geometric properties of the natural distributions on the deformation spaces of unbendable rational curves and the projective geometric properties of their varieties of minimal rational tangents, we concentrate on the case of $p=1$ and $n leq 5$, which is the simplest nontrivial situation. In this case, the families of unbendable rational curves fall essentially into two classes: Goursat type or Cartan type. Those of Goursat type arise from ordinary differential equations and those of Cartan type have special features related to contact geometry. We show that the family of lines on any nonsingular cubic 4-fold is of Goursat type, whereas the family of lines on a general quartic 5-fold is of Cartan type, in the proof of which the projective geometry of varieties of minimal rational tangents plays a key role.
104 - Jun-Muk Hwang 2017
In a joint work with N. Mok in 1997, we proved that for an irreducible representation $G subset {bf GL}(V),$ if a holomorphic $G$-structure exists on a uniruled projective manifold, then the Lie algebra of $G$ has nonzero prolongation. We tried to generalize this to an arbitrary connected algebraic subgroup $G subset {bf GL}(V)$ and a complex manifold containing an immersed rational curve, but the proposed proof had a flaw.
162 - Andrew Putman 2011
Let $Gamma$ be a finite-index subgroup of the mapping class group of a closed genus $g$ surface that contains the Torelli group. For instance, $Gamma$ can be the level $L$ subgroup or the spin mapping class group. We show that $H_2(Gamma;Q) cong Q$ for $g geq 5$. A corollary of this is that the rational Picard groups of the associated finite covers of the moduli space of curves are equal to $Q$. We also prove analogous results for surface with punctures and boundary components.
150 - Bjorn Poonen 2020
In 1922, Mordell conjectured the striking statement that for a polynomial equation $f(x,y)=0$, if the topology of the set of complex number solutions is complicated enough, then the set of rational number solutions is finite. This was proved by Faltings in 1983, and again by a different method by Vojta in 1991, but neither proof provided a way to provably find all the rational solutions, so the search for other proofs has continued. Recently, Lawrence and Venkatesh found a third proof, relying on variation in families of $p$-adic Galois representations; this is the subject of the present exposition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا