Rapid Spectral Variability of a Giant Flare from a Magnetar in NGC 253


Abstract in English

Magnetars are slowly-rotating neutron stars with extremely strong magnetic fields ($10^{13-15}$ G), episodically emitting $sim100$ ms long X-ray bursts with energies of $sim10^{40-41}$ erg. Rarely, they produce extremely bright, energetic giant flares that begin with a short ($sim0.2$ s), intense flash, followed by fainter, longer lasting emission modulated by the magnetar spin period (typically 2-12 s), thus confirming their origin. Over the last 40 years, only three such flares have been observed in our local group; they all suffered from instrumental saturation due to their extreme intensity. It has been proposed that extra-galactic giant flares likely constitute a subset of short gamma-ray bursts, noting that the sensitivity of current instrumentation prevents us from detecting the pulsating tail, while the initial bright flash is readily observable out to distances $sim 10-20$ Mpc. Here, we report X- and gamma-ray observations of GRB 200415A, which exhibits a rapid onset, very fast time variability, flat spectra and significant sub-millisecond spectral evolution. These attributes match well with those expected for a giant flare from an extra-galactic magnetar, noting that GRB 200415A is directionally associated with the galaxy NGC 253 ($sim$3.5 Mpc away). The detection of $sim3$ MeV photons provides definitive evidence for relativistic motion of the emitting plasma. The observed rapid spectral evolution can naturally be generated by radiation emanating from such rapidly-moving gas in a rotating magnetar.

Download