No Arabic abstract
Analyzing the groups in the network based on same attributes, functions or connections between nodes is a way to understand network information. The task of discovering a series of node groups is called community detection. Generally, two types of information can be utilized to fulfill this task, i.e., the link structures and the node attributes. The temporal text network is a special kind of network that contains both sources of information. Typical representatives include online blog networks, the World Wide Web (WWW) and academic citation networks. In this paper, we study the problem of overlapping community detection in temporal text network. By examining 32 large temporal text networks, we find a lot of edges connecting two nodes with no common community and discover that nodes in the same community share similar textual contents. This scenario cannot be quantitatively modeled by practically all existing community detection methods. Motivated by these empirical observations, we propose MAGIC (Model Affiliation Graph with Interacting Communities), a generative model which captures community interactions and considers the information from both link structures and node attributes. Our experiments on 3 types of datasets show that MAGIC achieves large improvements over 4 state-of-the-art methods in terms of 4 widely-used metrics.
With the rapid development of Internet technology, online social networks (OSNs) have got fast development and become increasingly popular. Meanwhile, the research works across multiple social networks attract more and more attention from researchers, and community detection is an important one across OSNs for online security problems, such as the user behavior analysis and abnormal community discovery. In this paper, a community detection method is proposed across multiple social networks based on overlapping users. First, the concept of overlapping users is defined, then an algorithm CMN NMF is designed to discover the stub communities from overlapping users based on the social relevance. After that, we extend each stub community in different social networks by adding the users with strong similarity, and in the end different communities are excavated out across networks. Experimental results show the advantage on effectiveness of our method over other methods under real data sets.
We develop a Bayesian hierarchical model to identify communities in networks for which we do not observe the edges directly, but instead observe a series of interdependent signals for each of the nodes. Fitting the model provides an end-to-end community detection algorithm that does not extract information as a sequence of point estimates but propagates uncertainties from the raw data to the community labels. Our approach naturally supports multiscale community detection as well as the selection of an optimal scale using model comparison. We study the properties of the algorithm using synthetic data and apply it to daily returns of constituents of the S&P100 index as well as climate data from US cities.
Community detection is crucial for analyzing social and biological networks, and comprehensive approaches have been proposed in the last two decades. Nevertheless, finding all overlapping communities in large networks that could accurately approximate the ground-truth communities remains challenging. In this work, we present the QOCE (Quadratic Optimization based Clique Expansion), an overlapping community detection algorithm that could scale to large networks with hundreds of thousands of nodes and millions of edges. QOCE follows the popular seed set expansion strategy, regarding each high-quality maximal clique as the initial seed set and applying quadratic optimization for the expansion. We extensively evaluate our algorithm on 28 synthetic LFR networks and six real-world networks of various domains and scales, and compare QOCE with four state-of-the-art overlapping community detection algorithms. Empirical results demonstrate the competitive performance of the proposed approach in terms of detection accuracy, efficiency, and scalability.
A common goal in network modeling is to uncover the latent community structure present among nodes. For many real-world networks, observed connections consist of events arriving as streams, which are then aggregated to form edges, ignoring the temporal dynamic component. A natural way to take account of this temporal dynamic component of interactions is to use point processes as the foundation of the network models for community detection. Computational complexity hampers the scalability of such approaches to large sparse networks. To circumvent this challenge, we propose a fast online variational inference algorithm for learning the community structure underlying dynamic event arrivals on a network using continuous-time point process latent network models. We provide regret bounds on the loss function of this procedure, giving theoretical guarantees on performance. The proposed algorithm is illustrated, using both simulation studies and real data, to have comparable performance in terms of community structure in terms of community recovery to non-online variants. Our proposed framework can also be readily modified to incorporate other popular network structures.
We introduce a new paradigm that is important for community detection in the realm of network analysis. Networks contain a set of strong, dominant communities, which interfere with the detection of weak, natural community structure. When most of the members of the weak communities also belong to stronger communities, they are extremely hard to be uncovered. We call the weak communities the hidden community structure. We present a novel approach called HICODE (HIdden COmmunity DEtection) that identifies the hidden community structure as well as the dominant community structure. By weakening the strength of the dominant structure, one can uncover the hidden structure beneath. Likewise, by reducing the strength of the hidden structure, one can more accurately identify the dominant structure. In this way, HICODE tackles both tasks simultaneously. Extensive experiments on real-world networks demonstrate that HICODE outperforms several state-of-the-art community detection methods in uncovering both the dominant and the hidden structure. In the Facebook university social networks, we find multiple non-redundant sets of communities that are strongly associated with residential hall, year of registration or career position of the faculties or students, while the state-of-the-art algorithms mainly locate the dominant ground truth category. In the Due to the difficulty of labeling all ground truth communities in real-world datasets, HICODE provides a promising approach to pinpoint the existing latent communities and uncover communities for which there is no ground truth. Finding this unknown structure is an extremely important community detection problem.