Do you want to publish a course? Click here

Multiscale regression on unknown manifolds

86   0   0.0 ( 0 )
 Added by Stefano Vigogna
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We consider the regression problem of estimating functions on $mathbb{R}^D$ but supported on a $d$-dimensional manifold $ mathcal{M} subset mathbb{R}^D $ with $ d ll D $. Drawing ideas from multi-resolution analysis and nonlinear approximation, we construct low-dimensional coordinates on $mathcal{M}$ at multiple scales, and perform multiscale regression by local polynomial fitting. We propose a data-driven wavelet thresholding scheme that automatically adapts to the unknown regularity of the function, allowing for efficient estimation of functions exhibiting nonuniform regularity at different locations and scales. We analyze the generalization error of our method by proving finite sample bounds in high probability on rich classes of priors. Our estimator attains optimal learning rates (up to logarithmic factors) as if the function was defined on a known Euclidean domain of dimension $d$, instead of an unknown manifold embedded in $mathbb{R}^D$. The implemented algorithm has quasilinear complexity in the sample size, with constants linear in $D$ and exponential in $d$. Our work therefore establishes a new framework for regression on low-dimensional sets embedded in high dimensions, with fast implementation and strong theoretical guarantees.



rate research

Read More

We consider the theory of regression on a manifold using reproducing kernel Hilbert space methods. Manifold models arise in a wide variety of modern machine learning problems, and our goal is to help understand the effectiveness of various implicit and explicit dimensionality-reduction methods that exploit manifold structure. Our first key contribution is to establish a novel nonasymptotic version of the Weyl law from differential geometry. From this we are able to show that certain spaces of smooth functions on a manifold are effectively finite-dimensional, with a complexity that scales according to the manifold dimension rather than any ambient data dimension. Finally, we show that given (potentially noisy) function values taken uniformly at random over a manifold, a kernel regression estimator (derived from the spectral decomposition of the manifold) yields minimax-optimal error bounds that are controlled by the effective dimension.
132 - Miguel del Alamo 2021
We consider ill-posed inverse problems where the forward operator $T$ is unknown, and instead we have access to training data consisting of functions $f_i$ and their noisy images $Tf_i$. This is a practically relevant and challenging problem which current methods are able to solve only under strong assumptions on the training set. Here we propose a new method that requires minimal assumptions on the data, and prove reconstruction rates that depend on the number of training points and the noise level. We show that, in the regime of many training data, the method is minimax optimal. The proposed method employs a type of convolutional neural networks (U-nets) and empirical risk minimization in order to fit the unknown operator. In a nutshell, our approach is based on two ideas: the first is to relate U-nets to multiscale decompositions such as wavelets, thereby linking them to the existing theory, and the second is to use the hierarchical structure of U-nets and the low number of parameters of convolutional neural nets to prove entropy bounds that are practically useful. A significant difference with the existing works on neural networks in nonparametric statistics is that we use them to approximate operators and not functions, which we argue is mathematically more natural and technically more convenient.
193 - Shie Mannor 2014
In the standard setting of approachability there are two players and a target set. The players play repeatedly a known vector-valued game where the first player wants to have the average vector-valued payoff converge to the target set which the other player tries to exclude it from this set. We revisit this setting in the spirit of online learning and do not assume that the first player knows the game structure: she receives an arbitrary vector-valued reward vector at every round. She wishes to approach the smallest (best) possible set given the observed average payoffs in hindsight. This extension of the standard setting has implications even when the original target set is not approachable and when it is not obvious which expansion of it should be approached instead. We show that it is impossible, in general, to approach the best target set in hindsight and propose achievable though ambitious alternative goals. We further propose a concrete strategy to approach these goals. Our method does not require projection onto a target set and amounts to switching between scalar regret minimization algorithms that are performed in episodes. Applications to global cost minimization and to approachability under sample path constraints are considered.
We propose a novel algorithm for large-scale regression problems named histogram transform ensembles (HTE), composed of random rotations, stretchings, and translations. First of all, we investigate the theoretical properties of HTE when the regression function lies in the H{o}lder space $C^{k,alpha}$, $k in mathbb{N}_0$, $alpha in (0,1]$. In the case that $k=0, 1$, we adopt the constant regressors and develop the na{i}ve histogram transforms (NHT). Within the space $C^{0,alpha}$, although almost optimal convergence rates can be derived for both single and ensemble NHT, we fail to show the benefits of ensembles over single estimators theoretically. In contrast, in the subspace $C^{1,alpha}$, we prove that if $d geq 2(1+alpha)/alpha$, the lower bound of the convergence rates for single NHT turns out to be worse than the upper bound of the convergence rates for ensemble NHT. In the other case when $k geq 2$, the NHT may no longer be appropriate in predicting smoother regression functions. Instead, we apply kernel histogram transforms (KHT) equipped with smoother regressors such as support vector machines (SVMs), and it turns out that both single and ensemble KHT enjoy almost optimal convergence rates. Then we validate the above theoretical results by numerical experiments. On the one hand, simulations are conducted to elucidate that ensemble NHT outperform single NHT. On the other hand, the effects of bin sizes on accuracy of both NHT and KHT also accord with theoretical analysis. Last but not least, in the real-data experiments, comparisons between the ensemble KHT, equipped with adaptive histogram transforms, and other state-of-the-art large-scale regression estimators verify the effectiveness and accuracy of our algorithm.
116 - HaiYing Wang 2020
This paper studies binary logistic regression for rare events data, or imbalanced data, where the number of events (observations in one class, often called cases) is significantly smaller than the number of nonevents (observations in the other class, often called controls). We first derive the asymptotic distribution of the maximum likelihood estimator (MLE) of the unknown parameter, which shows that the asymptotic variance convergences to zero in a rate of the inverse of the number of the events instead of the inverse of the full data sample size. This indicates that the available information in rare events data is at the scale of the number of events instead of the full data sample size. Furthermore, we prove that under-sampling a small proportion of the nonevents, the resulting under-sampled estimator may have identical asymptotic distribution to the full data MLE. This demonstrates the advantage of under-sampling nonevents for rare events data, because this procedure may significantly reduce the computation and/or data collection costs. Another common practice in analyzing rare events data is to over-sample (replicate) the events, which has a higher computational cost. We show that this procedure may even result in efficiency loss in terms of parameter estimation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا