Do you want to publish a course? Click here

Atomistic metrics of BaSO$_4$ as an ultra-efficient radiative cooling material: a first-principles prediction

68   0   0.0 ( 0 )
 Added by Zhen Tong
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Radiative cooling has recently revived due to its significant potential as an environmentally friendly cooling technology. However, the design of particle-matrix cooling nanocomposites was generally carried out via tedious trial-and-error approaches, and the atomistic physics for efficient radiative cooling was not well understood. In this work, we identify the atomistic metrics of Barium Sulfate (BaSO$_4$) nanocomposite, which is an ultra-efficient radiative cooling material, using a predictive first-principles approach coupled with Monte Carlo simulations. Our results show that BaSO$_4$-acrylic nanocomposites not only attain high total solar reflectance of 92.5% (0.28 - 4.0 um), but also simultaneously demonstrate high normal emittance of 96.0% in the sky window region (8 - 13 um), outperforming the commonly used $alpha$-quartz ($alpha$-SiO$_2$). We identify two pertinent characters of ultra-efficient radiative cooling paints: i) a balanced band gap and refractive index, which enables strong scattering while negating absorption in the solar spectrum, and ii) a sufficient number of infrared-active optical resonance phonon modes resulting in abundant Reststrahlen bands and high emissivity in the sky window. The first principles approach and the resulted physical insights in this work pave the way for further search of ultra-efficient radiative cooling materials.



rate research

Read More

The structural, elastic and electronic properties of ReN are investigated by first-principles calculations based on density functional theory. Two competing structures, i.e., CsCl-like and NiAs-like structures, are found and the most stable structure, NiAs-like, has a hexagonal symmetry which belongs to space group P63/mmc with a=2.7472 and c=5.8180 AA. ReN with hexagonal symmetry is a metal ultra-incompressible solid and has less elastic anisotropy. The ultra-incompressibility of ReN is attributed to its high valence electron density and strong covalence bondings. Calculations of density of states and charge density distribution, together with Mulliken atomic population analysis, show that the bondings of ReN should be a mixture of metallic, covalent, and ionic bondings. Our results indicate that ReN can be used as a potential ultra-incompressible conductor. In particular, we obtain a superconducting transition temperature T$_c$=4.8 K for ReN.
The band structure, optical and defects properties of Ba_{2}TeO are systematically investigated using density functional theory with a view to understanding its potential as an optoelectronic or trans- parent conducting material. Ba_{2}TeO crystallizes with tetragonal structure (space group P4/nmm) and with a 2.93 eV optical band gap 1 . We find relatively modest band masses for both electrons and holes suggesting applications. Optical properties show a infrared-red absorption when doped. This could potentially be useful for combining wavelength filtering and transparent conducting functions. Furthermore, our defect calculations show that Ba_{2}TeO is intrinsically p-type conducting under Ba-poor condition. However, the spontaneous formation of the donor defects may constrain the p-type transport properties and would need to be addressed to enable applications.
In the context of the search for environment-respectful, lead- and bismuth- free chemical compounds for devices such as actuators, SnTiO3 (ST) is investigated from first principles within DFT. Full geometry optimization provides a stable tetragonal structure relative to cubic one. From the equation of state the equilibrium volume of SnTiO3 is found smaller than ferroelectric PbTiO3 (PT) in agreement with a smaller Sn2+ radius. While ionic displacements exhibit similar trends between ST and PT a larger tetragonality (c/a ratio) for ST results in a larger polarization, PST = 1.1 C.m2. The analysis of the electronic band structure detailing the Sn-O and Ti-O interactions points to a differentiated chemical bonding and a reinforcement of the covalent bonding with respect to Pb homologue.
We present a computationally efficient general first-principles based method for spin-lattice simulations for solids. Our method is based on a combination of atomistic spin dynamics and molecular dynamics, expressed through a spin-lattice Hamiltonian where the bilinear magnetic term is expanded to second order in displacement, and all parameters are computed using density functional theory. The effect of first-order spin-lattice coupling on the magnon and phonon dispersion in bcc Fe is reported as an example, and is seen to be in good agreement with previous simulations performed with an empirical potential approach. In addition, we also illustrate the abilities of our method on a more conceptual level, by exploring dissipation-free spin and lattice motion in small magnetic clusters (a dimer, trimer and quadmer). Our method opens the door for quantitative description and understanding of the microscopic origin of many fundamental phenomena of contemporary interest, such as ultrafast demagnetization, magnetocalorics, and spincaloritronics.
A novel stable crystallographic structure is discovered in a variety of ABO3, ABF3 and A2O3 compounds (including materials of geological relevance, prototypes of multiferroics, exhibiting strong spin-orbit effects, etc...), via the use of first principles. This novel structure appears under hydrostatic pressure, and is the first post-post-perovskite phase to be found. It provides a successful solution to experimental puzzles in important systems, and is characterized by one-dimensional chains linked by group of two via edge-sharing oxygen/fluorine octahedra. Such unprecedented organization automatically results in anisotropic elastic properties and new magnetic arrangements. Depending on the system of choice, this post-post-perovskite structure also possesses electronic band gaps ranging from zero to ~ 10 eV being direct or indirect in nature, which emphasizes its universality and its potential to have striking, e.g., electrical or transport phenomena.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا