Do you want to publish a course? Click here

An Integral Sliding-Mode Parallel Control Approach for General Nonlinear Systems via Piecewise Affine Linear Models

90   0   0.0 ( 0 )
 Added by Qing Gao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The fundamental problem of stabilizing a general non-affine continuous-time nonlinear system is investigated via piecewise affine linear models (PALMs) in this paper. A novel integral sliding-mode parallel control (ISMPC) approach is developed, where an uncertain piecewise affine system (PWA) is constructed to model a non-affine continuous-time nonlinear system equivalently on a compact region containing the origin. A piecewise integral sliding-mode parallel controller is designed to globally stabilize the uncertain PWA and, consequently, to semi-globally stabilize the original nonlinear system. The proposed scheme enjoys two favorable features: i) some restrictions on the system input channel are eliminated, thus the developed method is more relaxed compared with the published approaches; and ii) it is convenient to be used to deal with both matched and unmatched uncertainties of the system. Moreover, we provide discussions about the universality analysis of the developed control strategy for two kinds of typical nonlinear systems. Simulation results from two numerical examples further demonstrate the performance of the developed control approach.



rate research

Read More

203 - Ugo Rosolia , Aaron D. Ames 2021
In this paper, we present an iterative Model Predictive Control (MPC) design for piecewise nonlinear systems. We consider finite time control tasks where the goal of the controller is to steer the system from a starting configuration to a goal state while minimizing a cost function. First, we present an algorithm that leverages a feasible trajectory that completes the task to construct a control policy which guarantees that state and input constraints are recursively satisfied and that the closed-loop system reaches the goal state in finite time. Utilizing this construction, we present a policy iteration scheme that iteratively generates safe trajectories which have non-decreasing performance. Finally, we test the proposed strategy on a discretized Spring Loaded Inverted Pendulum (SLIP) model with massless legs. We show that our methodology is robust to changes in initial conditions and disturbances acting on the system. Furthermore, we demonstrate the effectiveness of our policy iteration algorithm in a minimum time control task.
We propose two optimization-based heuristics for structure selection and identification of PieceWise Affine (PWA) models with exogenous inputs. The first method determines the number of affine sub-models assuming known model order of the sub-models, while the second approach estimates the model order for a given number of affine sub-models. Both approaches rely on the use of regularization-based shrinking strategies, that are exploited within a coordinate-descent algorithm. This allows us to estimate the structure of the PWA models along with its model parameters. Starting from an over-parameterized model, the key idea is to alternate between an identification step and structure refinement, based on the sparse estimates of the model parameters. The performance of the presented strategies is assessed over two benchmark examples.
In adaptive sliding mode control methods, an updating gain strategy associated with finite-time convergence to the sliding set is essential to deal with matched bounded perturbations with unknown upper-bound. However, the estimation of the finite time of any adaptive design is a complicated task since it depends not only on the upper-bound of unknown perturbation but also on the size of initial conditions. This brief proposes a uniform adaptive reaching phase strategy (ARPS) within a predefined reaching-time. Moreover, as a case of study, the barrier function approach is extended for perturbed MIMO systems with uncertain control matrix. The usage of proposed ARPS in the MIMO case solves simultaneously two issues: giving a uniform reaching phase with a predefined reaching-time and adapting to the perturbation norm while in a predefined vicinity of the sliding manifold.
Discrete abstractions have become a standard approach to assist control synthesis under complex specifications. Most techniques for the construction of a discrete abstraction for a continuous-time system require time-space discretization of the concrete system, which constitutes property satisfaction for the continuous-time system non-trivial. In this work, we aim at relaxing this requirement by introducing a control interface. Firstly, we connect the continuous-time uncertain concrete system with its discrete deterministic state-space abstraction with a control interface. Then, a novel stability notion called $eta$-approximate controlled globally practically stable, and a new simulation relation called robust approximate simulation relation are proposed. It is shown that the uncertain concrete system, under the condition that there exists an admissible control interface such that the augmented system (composed of the concrete system and its abstraction) can be made $eta$-approximate controlled globally practically stable, robustly approximately simulates its discrete abstraction. The effectiveness of the proposed results is illustrated by two simulation examples.
149 - Yongxin Chen 2021
We consider the covariance steering problem for nonlinear control-affine systems. Our objective is to find an optimal control strategy to steer the state of a system from an initial distribution to a target one whose mean and covariance are given. Due to the nonlinearity, the existing techniques for linear covariance steering problems are not directly applicable. By leveraging the celebrated Girsanov theorem, we formulate the problem into an optimization over the space path distributions. We then adopt a generalized proximal gradient algorithm to solve this optimization, where each update requires solving a linear covariance steering problem. Our algorithm is guaranteed to converge to a local optimal solution with a sublinear rate. In addition, each iteration of the algorithm can be achieved in closed form, and thus the computational complexity of it is insensitive to the resolution of time-discretization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا