Do you want to publish a course? Click here

Inner horizon instability and the unstable cores of regular black holes

80   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Regular black holes with nonsingular cores have been considered in several approaches to quantum gravity, and as agnostic frameworks to address the singularity problem and Hawkings information paradox. While in a recent work we argued that the inner core is destabilized by linear perturbations, opposite claims were raised that regular black holes have in fact stable cores. To reconcile these arguments, we discuss a generalization of the geometrical framework, originally applied to Reissner--Nordtsrom black holes by Ori, and show that regular black holes have an exponentially growing Misner--Sharp mass at the inner horizon. This result can be taken as an indication that stable nonsingular black hole spacetimes are not the definitive endpoint of a quantum gravity regularization mechanism, and that nonperturbative backreaction effects must be taken into account in order to provide a consistent description of the quantum-gravitational endpoint of gravitational stellar collapse.



rate research

Read More

A common argument suggests that non-singular geometries may not describe black holes observed in nature since they are unstable due to a mass-inflation effect. We analyze the dynamics associated with spherically symmetric, regular black holes taking the full backreaction between the infalling matter and geometry into account. We identify the crucial features taming the growth of the mass function and a diminished curvature singularity at the Cauchy horizon and demonstrate that the regular black hole solutions proposed by Hayward and obtained from Asymptotic Safety satisfy these properties.
191 - Alex Simpson , Matt Visser 2019
Standard models of regular black holes typically have asymptotically de Sitter regions at their cores. Herein we shall consider novel hollow regular black holes, those with asymptotically Minkowski cores. The reason for doing so is twofold: First, these models greatly simplify the physics in the deep core, and second, one can trade off rather messy cubic and quartic polynomial equations for somewhat more elegant special functions such as exponentials and the increasingly important Lambert $W$ function. While these hollow regular black holes share many features with the Bardeen/Hayward/Frolov regular black holes there are also significant differences.
Kerr-Schild solutions of the Einstein-Maxwell field equations, containing semi-infinite axial singular lines, are investigated. It is shown that axial singularities break up the black hole, forming holes in the horizon. As a result, a tube-like region appears which allows matter to escape from the interior without crossing the horizon. It is argued that axial singularities of this kind, leading to very narrow beams, can be created in black holes by external electromagnetic or gravitational excitations and may be at the origin of astrophysically observable effects such as jet formation.
89 - Alex Simpson 2021
Various spacetime candidates for traversable wormholes, regular black holes, and `black-bounces are presented and thoroughly explored in the context of the gravitational theory of general relativity. All candidate spacetimes belong to the mathematically simple class of spherically symmetric geometries; the majority are static, with a single dynamical (time-dependent) geometry explored. To the extent possible, the candidates are presented through the use of a global coordinate patch -- some of the prior literature (especially concerning traversable wormholes) has often proposed coordinate systems for desirable solutions to the Einstein equations requiring a multi-patch atlas. The most interesting cases include the so-called `exponential metric -- well-favoured by proponents of alternative theories of gravity but which actually has a standard classical interpretation, and the `black-bounce to traversable wormhole case -- where a metric is explored which represents either a traversable wormhole or a regular black hole, depending on the value of the newly introduced scalar parameter $a$. This notion of `black-bounce is defined as the case where the spherical boundary of a regular black hole forces one to travel towards a one-way traversable `bounce into a future reincarnation of our own universe. The metric of interest is then explored further in the context of a time-dependent spacetime, where the line element is rephrased with a Vaidya-like time-dependence imposed on the mass of the object, and in terms of outgoing-/ingoing Eddington-Finkelstein coordinates. Analysing these candidate spacetimes extends the pre-existing discussion concerning the viability of non-singular black hole solutions in the context of general relativity, as well as contributing to the dialogue on whether an arbitrarily advanced civilization would be able to construct a traversable wormhole.
137 - Marco Astorino 2016
Using the covariant phase space formalism, we compute the conserved charges for a solution, describing an accelerating and electrically charged Reissner-Nordstrom black hole. The metric is regular provided that the acceleration is driven by an external electric field, in spite of the usual string of the standard C-metric. The Smarr formula and the first law of black hole thermodynamics are fulfilled. The resulting mass has the same form of the Christodoulou-Ruffini mass formula. On the basis of these results, we can extrapolate the mass and thermodynamics of the rotating C-metric, which describes a Kerr-Newman-(A)dS black hole accelerated by a pulling string.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا