Do you want to publish a course? Click here

Notes on the Hodge Conjecture for Fermat Varieties

77   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We review a combinatoric approach to the Hodge Conjecture for Fermat Varieties and announce new cases where the conjecture is true.



rate research

Read More

We show that very general hypersurfaces in odd-dimensional simplicial projective toric varieties verifying a certain combinatorial property satisfy the Hodge conjecture (these include projective spaces). This gives a connection between the Oda conjecture and Hodge conjecture. We also give an explicit criterion which depends on the degree for very general hypersurfaces for the combinatorial condition to be verified.
In this paper we prove that the cohomology of smooth projective tropical varieties verify the tropical analogs of three fundamental theorems which govern the cohomology of complex projective varieties: Hard Lefschetz theorem, Hodge-Riemann relations and monodromy-weight conjecture. On the way to establish these results, we introduce and prove other results of independent interest. This includes a generalization of the results of Adiprasito-Huh-Katz, Hodge theory for combinatorial geometries, to any unimodular quasi-projective fan having the same support as the Bergman fan of a matroid, a tropical analog for Bergman fans of the pioneering work of Feichtner-Yuzvinsky on cohomology of wonderful compactifications (treated in a separate paper, recalled and used here), a combinatorial study of the tropical version of the Steenbrink spectral sequence, a treatment of Kahler forms in tropical geometry and their associated Hodge-Lefschetz structures, a tropical version of the projective bundle formula, and a result in polyhedral geometry on the existence of quasi-projective unimodular triangulations of polyhedral spaces.
The Katz-Klemm-Vafa conjecture expresses the Gromov-Witten theory of K3 surfaces (and K3-fibred 3-folds in fibre classes) in terms of modular forms. Its recent proof gives the first non-toric geometry in dimension greater than 1 where Gromov-Witten theory is exactly solved in all genera. We survey the various steps in the proof. The MNOP correspondence and a new Pairs/Noether-Lefschetz correspondence for K3-fibred 3-folds transform the Gromov-Witten problem into a calculation of the full stable pairs theory of a local K3-fibred 3-fold. The stable pairs calculation is then carried out via degeneration, localisation, vanishing results, and new multiple cover formulae.
121 - Genival da Silva Jr 2021
The Hodge conjecture is a major open problem in complex algebraic geometry. In this survey, we discuss the main cases where the conjecture is known, and also explain an approach by Griffiths-Green to solve the problem.
We calculate the E-polynomials of certain twisted GL(n,C)-character varieties M_n of Riemann surfaces by counting points over finite fields using the character table of the finite group of Lie-type GL(n,F_q) and a theorem proved in the appendix by N. Katz. We deduce from this calculation several geometric results, for example, the value of the topological Euler characteristic of the associated PGL(n,C)-character variety. The calculation also leads to several conjectures about the cohomology of M_n: an explicit conjecture for its mixed Hodge polynomial; a conjectured curious Hard Lefschetz theorem and a conjecture relating the pure part to absolutely indecomposable representations of a certain quiver. We prove these conjectures for n = 2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا