No Arabic abstract
Cells and organisms follow aligned structures in their environment, a process that can generate persistent migration paths. Kinetic transport equations are a popular modelling tool for describing biological movements at the mesoscopic level, yet their formulations usually assume a constant turning rate. Here we relax this simplification, extending to include a turning rate that varies according to the anisotropy of a heterogeneous environment. We extend known methods of parabolic and hyperbolic scaling and apply the results to cell movement on micro-patterned domains. We show that inclusion of orientation dependence in the turning rate can lead to persistence of motion in an otherwise fully symmetric environment, and generate enhanced diffusion in structured domains.
The epigenetic pathway of a cell as it differentiates from a stem cell state to a mature lineage-committed one has been historically understood in terms of Waddingtons landscape, consisting of hills and valleys. The smooth top and valley-strewn bottom of the hill represents their undifferentiated and differentiated states respectively. Although mathematical ideas rooted in nonlinear dynamics and bifurcation theory have been used to quantify this picture, the importance of time delays arising from multistep chemical reactions or cellular shape transformations have been ignored so far. We argue that this feature is crucial in understanding cell differentiation and explore the role of time delay in a model of a single gene regulatory circuit. We show that the interplay of time-dependant drive and delay introduces a new regime where the system shows sustained oscillations between the two admissible steady states. We interpret these results in the light of recent perplexing experiments on inducing the pluripotent state in mouse somatic cells. We also comment on how such an oscillatory state can provide a framework for understanding more general feedback circuits in cell development.
Phototaxis is an important reaction to light displayed by a wide range of motile microorganisms. Flagellated eukaryotic microalgae in particular, like the model organism Chlamydomonas reinhardtii, steer either towards or away from light by a rapid and precisely timed modulation of their flagellar activity. Cell steering, however, is only the beginning of a much longer process which ultimately allows cells to determine their light exposure history. This process is not well understood. Here we present a first quantitative study of the long timescale phototactic motility of Chlamydomonas at both single cell and population levels. Our results reveal that the phototactic strategy adopted by these microorganisms leads to an efficient exposure to light, and that the phototactic response is modulated over typical timescales of tens of seconds. The adaptation dynamics for phototaxis and chlorophyll fluorescence show a striking quantitative agreement, suggesting that photosynthesis controls quantitatively how cells navigate a light field.
We study a simplified stochastic model for the vascularization of a growing tumor, incorporating the formation of new blood vessels at the tumor periphery as well as their regression in the tumor center. The resulting morphology of the tumor vasculature differs drastically from the original one. We demonstrate that the probabilistic vessel collapse has to be correlated with the blood shear force in order to yield percolating network structures. The resulting tumor vasculature displays fractal properties. Fractal dimension, microvascular density (MVD), blood flow and shear force has been computed for a wide range of parameters.
Latency reduction of postsynaptic spikes is a well-known effect of Synaptic Time-Dependent Plasticity. We expand this notion for long postsynaptic spike trains, showing that, for a fixed input spike train, STDP reduces the number of postsynaptic spikes and concentrates the remaining ones. Then we study the consequences of this phenomena in terms of coding, finding that this mechanism improves the neural code by increasing the signal-to-noise ratio and lowering the metabolic costs of frequent stimuli. Finally, we illustrate that the reduction of postsynaptic latencies can lead to the emergence of predictions.
Chemotaxis is typically modeled in the context of cellular motion towards a static, exogenous source of chemoattractant. Here, we propose a time-dependent mechanism of chemotaxis in which a self-propelled particle ({it e.g.}, a cell) releases a chemical that diffuses to fixed particles (targets) and signals the production of a second chemical by these targets. The particle then moves up concentration gradients of this second chemical, analogous to diffusive echolocation. When one target is present, we describe probe release strategies that optimize travel of the cell to the target. In the presence of multiple targets, the one selected by the cell depends on the strength and, interestingly, on the frequency of probe chemical release. Although involving an additional chemical signaling step, our chemical ``pinging hypothesis allows for greater flexibility in regulating target selection, as seen in a number of physical or biological realizations.