Do you want to publish a course? Click here

Predicting Relative Depth between Objects from Semantic Features

63   0   0.0 ( 0 )
 Added by Stefan Cassar
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Vision and language tasks such as Visual Relation Detection and Visual Question Answering benefit from semantic features that afford proper grounding of language. The 3D depth of objects depicted in 2D images is one such feature. However it is very difficult to obtain accurate depth information without learning the appropriate features, which are scene dependent. The state of the art in this area are complex Neural Network models trained on stereo image data to predict depth per pixel. Fortunately, in some tasks, its only the relative depth between objects that is required. In this paper the extent to which semantic features can predict course relative depth is investigated. The problem is casted as a classification one and geometrical features based on object bounding boxes, object labels and scene attributes are computed and used as inputs to pattern recognition models to predict relative depth. i.e behind, in-front and neutral. The results are compared to those obtained from averaging the output of the monodepth neural network model, which represents the state-of-the art. An overall increase of 14% in relative depth accuracy over relative depth computed from the monodepth model derived results is achieved.



rate research

Read More

3D vehicle detection based on point cloud is a challenging task in real-world applications such as autonomous driving. Despite significant progress has been made, we observe two aspects to be further improved. First, the semantic context information in LiDAR is seldom explored in previous works, which may help identify ambiguous vehicles. Second, the distribution of point cloud on vehicles varies continuously with increasing depths, which may not be well modeled by a single model. In this work, we propose a unified model SegVoxelNet to address the above two problems. A semantic context encoder is proposed to leverage the free-of-charge semantic segmentation masks in the birds eye view. Suspicious regions could be highlighted while noisy regions are suppressed by this module. To better deal with vehicles at different depths, a novel depth-aware head is designed to explicitly model the distribution differences and each part of the depth-aware head is made to focus on its own target detection range. Extensive experiments on the KITTI dataset show that the proposed method outperforms the state-of-the-art alternatives in both accuracy and efficiency with point cloud as input only.
The existing image feature extraction methods are primarily based on the content and structure information of images, and rarely consider the contextual semantic information. Regarding some types of images such as scenes and objects, the annotations and descriptions of them available on the web may provide reliable contextual semantic information for feature extraction. In this paper, we introduce novel semantic features of an image based on the annotations and descriptions of its similar images available on the web. Specifically, we propose a new method which consists of two consecutive steps to extract our semantic features. For each image in the training set, we initially search the top $k$ most similar images from the internet and extract their annotations/descriptions (e.g., tags or keywords). The annotation information is employed to design a filter bank for each image category and generate filter words (codebook). Finally, each image is represented by the histogram of the occurrences of filter words in all categories. We evaluate the performance of the proposed features in scene image classification on three commonly-used scene image datasets (i.e., MIT-67, Scene15 and Event8). Our method typically produces a lower feature dimension than existing feature extraction methods. Experimental results show that the proposed features generate better classification accuracies than vision based and tag based features, and comparable results to deep learning based features.
This paper focuses on semantic scene completion, a task for producing a complete 3D voxel representation of volumetric occupancy and semantic labels for a scene from a single-view depth map observation. Previous work has considered scene completion and semantic labeling of depth maps separately. However, we observe that these two problems are tightly intertwined. To leverage the coupled nature of these two tasks, we introduce the semantic scene completion network (SSCNet), an end-to-end 3D convolutional network that takes a single depth image as input and simultaneously outputs occupancy and semantic labels for all voxels in the camera view frustum. Our network uses a dilation-based 3D context module to efficiently expand the receptive field and enable 3D context learning. To train our network, we construct SUNCG - a manually created large-scale dataset of synthetic 3D scenes with dense volumetric annotations. Our experiments demonstrate that the joint model outperforms methods addressing each task in isolation and outperforms alternative approaches on the semantic scene completion task.
We propose a method to reconstruct, complete and semantically label a 3D scene from a single input depth image. We improve the accuracy of the regressed semantic 3D maps by a novel architecture based on adversarial learning. In particular, we suggest using multiple adversarial loss terms that not only enforce realistic outputs with respect to the ground truth, but also an effective embedding of the internal features. This is done by correlating the latent features of the encoder working on partial 2.5D data with the latent features extracted from a variational 3D auto-encoder trained to reconstruct the complete semantic scene. In addition, differently from other approaches that operate entirely through 3D convolutions, at test time we retain the original 2.5D structure of the input during downsampling to improve the effectiveness of the internal representation of our model. We test our approach on the main benchmark datasets for semantic scene completion to qualitatively and quantitatively assess the effectiveness of our proposal.
Human environments contain numerous objects configured in a variety of arrangements. Our goal is to enable robots to repose previously unseen objects according to learned semantic relationships in novel environments. We break this problem down into two parts: (1) finding physically valid locations for the objects and (2) determining if those poses satisfy learned, high-level semantic relationships. We build our models and training from the ground up to be tightly integrated with our proposed planning algorithm for semantic placement of unknown objects. We train our models purely in simulation, with no fine-tuning needed for use in the real world. Our approach enables motion planning for semantic rearrangement of unknown objects in scenes with varying geometry from only RGB-D sensing. Our experiments through a set of simulated ablations demonstrate that using a relational classifier alone is not sufficient for reliable planning. We further demonstrate the ability of our planner to generate and execute diverse manipulation plans through a set of real-world experiments with a variety of objects.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا