Do you want to publish a course? Click here

Toward the endoscopic classification of unipotent representations of $p$-adic $G_2$

85   0   0.0 ( 0 )
 Added by Clifton Cunningham
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We begin this paper by reviewing the Langlands correspondence for unipotent representations of the exceptional group of type $G_2$ over a $p$-adic field $F$ and present it in an explicit form. Then we compute all ABV-packets, as defined in [CFM+21] following ideas from Vogans 1993 paper The local Langlands Conjecture, and prove that these packets satisfy properties derived from the expectation that they are generalized A-packets. We attach distributions to ABV-packets for $G_2$ and its endoscopic groups and study a geometric endoscopic transfer of these distributions. This paper builds on earlier work by the same authors.



rate research

Read More

In 1993 David Vogan proposed a basis for the vector space of stable distributions on $p$-adic groups using the microlocal geometry of moduli spaces of Langlands parameters. In the case of general linear groups, distribution characters of irreducible admissible representations, taken up to equivalence, form a basis for the vector space of stable distributions. In this paper we show that these two bases, one putative, cannot be equal. Specifically, we use the Kashiwara-Saito singularity to find a non-Arthur type irreducible admissible representation of $p$-adic $mathop{GL}_{16}$ whose ABV-packet, as defined in earlier work, contains exactly one other representation; remarkably, this other admissible representation is of Arthur type. In the course of this study we strengthen the main result concerning the Kashiwara-Saito singularity. The irreducible admissible representations in this paper illustrate a fact we found surprising: for general linear groups, while all A-packets are singletons, some ABV-packets are not.
In this article we propose a geometric description of Arthur packets for $p$-adic groups using vanishing cycles of perverse sheaves. Our approach is inspired by the 1992 book by Adams, Barbasch and Vogan on the Langlands classification of admissible representations of real groups and follows the direction indicated by Vogan in his 1993 paper on the Langlands correspondence. Using vanishing cycles, we introduce and study a functor from the category of equivariant perverse sheaves on the moduli space of certain Langlands parameters to local systems on the regular part of the conormal bundle for this variety. In this article we establish the main properties of this functor and show that it plays the role of microlocalization in the work of Adams, Barbasch and Vogan. We use this to define ABV-packets for pure rational forms of $p$-adic groups and propose a geometric description of the transfer coefficients that appear in Arthurs main local result in the endoscopic classification of representations. This article includes conjectures modelled on Vogans work, especially the prediction that Arthur packets are ABV-packets for $p$-adic groups. We gather evidence for these conjectures by verifying them in numerous examples.
This paper begins the project of defining Arthur packets of all unipotent representations for the $p$-adic exceptional group $G_2$. Here we treat the most interesting case by defining and computing Arthur packets with component group $S_3$. We also show that the distributions attached to these packets are stable, subject to a hypothesis. This is done using a self-contained microlocal analysis of simple equivariant perverse sheaves on the moduli space of homogeneous cubics in two variables. In forthcoming work we will treat the remaining unipotent representations and their endoscopic classification and strengthen our result on stability.
We introduce an infinite-dimensional $p$-adic affine group and construct its irreducible unitary representation. Our approach follows the one used by Vershik, Gelfand and Graev for the diffeomorphism group, but with modifications made necessary by the fact that the group does not act on the phase space. However it is possible to define its action on some classes of functions.
We construct a Langlands parameterization of supercuspidal representations of $G_2$ over a $p$-adic field. More precisely, for any finite extension $K / QQ_p$ we will construct a bijection [ CL_g : CA^0_g(G_2,K) rightarrow CG^0(G_2,K) ] from the set of generic supercuspidal representations of $G_2(K)$ to the set of irreducible continuous homomorphisms $rho : W_K to G_2(CC)$ with $W_K$ the Weil group of $K$. The construction of the map is simply a matter of assembling arguments that are already in the literature, together with a previously unpublished theorem of G. Savin on exceptional theta correspondences, included as an appendix. The proof that the map is a bijection is arithmetic in nature, and specifically uses automorphy lifting theorems. These can be applied thanks to a recent result of Hundley and Liu on automorphic descent from $GL(7)$ to $G_2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا