Do you want to publish a course? Click here

Automated feature extraction and selection for data-driven models of rapid battery capacity fade and end of life

89   0   0.0 ( 0 )
 Added by Samuel Greenbank
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Lithium-ion cells may experience rapid degradation in later life, especially with more extreme usage protocols. The onset of rapid degradation is called the `knee point, and forecasting it is important for the safe and economically viable use for batteries. We propose a data-driven method that uses automated feature selection to produce inputs for a Gaussian process regression model that estimates changes in battery health, from which the entire capacity fade trajectory, knee point and end of life may be predicted. The feature selection procedure flexibly adapts to varying inputs and prioritises those that impact degradation. For the datasets considered, it was found that calendar time and time spent in specific voltage regions had a strong impact on degradation rate. The approach produced median root mean square errors on capacity estimates under 1%, and also produced median knee point and end of life prediction errors of 2.6% and 1.3% respectively.



rate research

Read More

The complex nature of lithium-ion battery degradation has led to many machine learning based approaches to health forecasting being proposed in literature. However, machine learning can be computationally intensive. Linear approaches are faster but have previously been too inflexible for successful prognosis. For both techniques, the choice and quality of the inputs is a limiting factor of performance. Piecewise-linear models, combined with automated feature selection, offer a fast and flexible alternative without being as computationally intensive as machine learning. Here, a piecewise-linear approach to battery health forecasting was compared to a Gaussian process regression tool and found to perform equally well. The input feature selection process demonstrated the benefit of limiting the correlation between inputs. Further trials found that the piecewise-linear approach was robust to changing input size and availability of training data.
Battery Asset Management problem determines the minimum cost replacement schedules for each individual asset in a group of battery assets that operate in parallel. Battery cycle life varies under different operating conditions including temperature, depth of discharge, charge rate, etc., and a battery deteriorates due to usage, which cannot be handled by current asset management models. This paper presents battery cycle life prognosis and its integration with parallel asset management to reduce lifecycle cost of the Battery Energy Storage System (BESS). A nonlinear capacity fade model is incorporated in the parallel asset management model to update battery capacity. Parametric studies have been conducted to explore the influence of different model inputs (e.g. usage rate, unit battery capacity, operating condition and periodical demand) for a five-year time horizon. Experiment results verify the reasonableness of this new framework and suggest that the increase in battery lifetime leads to decrease in lifecycle cost.
Hundreds of millions of people lack access to electricity. Decentralised solar-battery systems are key for addressing this whilst avoiding carbon emissions and air pollution, but are hindered by relatively high costs and rural locations that inhibit timely preventative maintenance. Accurate diagnosis of battery health and prediction of end of life from operational data improves user experience and reduces costs. But lack of controlled validation tests and variable data quality mean existing lab-based techniques fail to work. We apply a scaleable probabilistic machine learning approach to diagnose health in 1027 solar-connected lead-acid batteries, each running for 400-760 days, totalling 620 million data rows. We demonstrate 73% accurate prediction of end of life, eight weeks in advance, rising to 82% at the point of failure. This work highlights the opportunity to estimate health from existing measurements using `big data techniques, without additional equipment, extending lifetime and improving performance in real-world applications.
This paper addresses the use of data-driven evolving techniques applied to fault prognostics. In such problems, accurate predictions of multiple steps ahead are essential for the Remaining Useful Life (RUL) estimation of a given asset. The fault prognostics solutions must be able to model the typical nonlinear behavior of the degradation processes of these assets, and be adaptable to each units particularities. In this context, the Evolving Fuzzy Systems (EFSs) are models capable of representing such behaviors, in addition of being able to deal with non-stationary behavior, also present in these problems. Moreover, a methodology to recursively track the models estimation error is presented as a way to quantify uncertainties that are propagated in the long-term predictions. The well-established NASAs Li-ion batteries data set is used to evaluate the models. The experiments indicate that generic EFSs can take advantage of both historical and stream data to estimate the RUL and its uncertainty.
Systematic design and verification of advanced control strategies for complex systems under uncertainty largely remains an open problem. Despite the promise of blackbox optimization methods for automated controller tuning, they generally lack formal guarantees on the solution quality, which is especially important in the control of safety-critical systems. This paper focuses on obtaining closed-loop performance guarantees for automated controller tuning, which can be formulated as a black-box optimization problem under uncertainty. We use recent advances in non-convex scenario theory to provide a distribution-free bound on the probability of the closed-loop performance measures. To mitigate the computational complexity of the data-driven scenario optimization method, we restrict ourselves to a discrete set of candidate tuning parameters. We propose to generate these candidates using constrained Bayesian optimization run multiple times from different random seed points. We apply the proposed method for tuning an economic nonlinear model predictive controller for a semibatch reactor modeled by seven highly nonlinear differential equations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا