Micropillar compression of single crystal tungsten carbide, Part 2: Lattice rotation axis to identify deformation slip mechanisms


Abstract in English

The plastic deformation mechanisms of tungsten carbide at room and elevated temperatures influence the wear and fracture properties of WC-Co hardmetal composite materials. Although the active slip planes and residual defect populations of room-temperature deformed WC have been previously characterised, the relationship between the residual defect structures, including glissile and sessile dislocations and stacking faults, and the active slip modes, which produce slip traces, is not yet clear. Part 1 of this study showed that {10-10} was the primary slip plane at all temperatures and orientations. In the present work, Part 2, crystallographic lattice reorientations of deformed WC micropillar mid-sections were mapped using focused ion beam (FIB) cross-sectioning and electron backscatter diffraction (EBSD). Lattice reorientation axis analysis has been used to discriminate <a> prismatic slip from multiple <c+a> prismatic slip in WC, enabling defect-scale deformation mechanisms to be distinguished, and their contribution to plastic deformation to be assessed, independently of TEM residual defect analysis. In prismatic-oriented pillars, deformation was primarily accommodated by cooperative multiple slip of <c+a> defects at room temperature, and by <a> dislocations at 600 {deg}C. In near-basal oriented pillars, the total slip direction was along <c>. The degree of lattice rotation and plastic buckling in the deformed basal pillar could be explained by prismatic slip constrained by the indenter face and pillar base.

Download