No Arabic abstract
We utilize the dark state in a {Lambda}-type three-level system to cool an ensemble of 85Rb atoms in an optical lattice [Morigi et al., Phys. Rev. Lett. 85, 4458 (2000)]. The common suppression of the carrier transition of atoms with different vibrational frequencies allows them to reach a subrecoil temperature of 100 nK after being released from the optical lattice. A nearly zero vibrational quantum number is determined from the time-of-flight measurements and adiabatic expansion process. The features of sideband cooling are examined in various parameter spaces. Our results show that dark-state sideband cooling is a simple and compelling method for preparing a large ensemble of atoms into their vibrational ground state of a harmonic potential and can be generalized to different species of atoms and molecules for studying ultracold physics that demands recoil temperature and below.
A method of sideband Raman cooling to the vibrational ground state of the $m=0$ Zeeman sublevel in a far-detuned two-dimensional optical lattice is proposed. In our scheme, the Raman coupling between vibrational manifolds of the adjacent Zeeman sublevels is shifted to the red sideband due to the ac Stark effect induced by a weak pump field. Thus, cooling and optical pumping to $m=0$ is achieved by purely optical means with coplanar cw laser beams. The optical lattice and cooling parameters are estimated in the framework of simple theoretical models. An application of the transverse sideband cooling method to frequency standards is discussed. Coherent population trapping for the sideband Raman transitions between the degenerate vibrational levels is predicted.
Sideband cooling is a popular method for cooling atoms to the ground state of an optical trap. Applying the same method to molecules requires a number of challenges to be overcome. Strong tensor Stark shifts in molecules cause the optical trapping potential, and corresponding trap frequency, to depend strongly on rotational, hyperfine and Zeeman state. Consequently, transition frequencies depend on the motional quantum number and there are additional heating mechanisms, either of which can be fatal for an effective sideband cooling scheme. We develop the theory of sideband cooling in state-dependent potentials, and derive an expression for the heating due to photon scattering. We calculate the ac Stark shifts of molecular states in the presence of a magnetic field, and for any polarization. We show that the complexity of sideband cooling can be greatly reduced by applying a large magnetic field to eliminate electron- and nuclear-spin degrees of freedom from the problem. We consider how large the magnetic field needs to be, show that heating can be managed sufficiently well, and present a simple recipe for cooling to the ground state of motion.
We propose a protocol to achieve high fidelity quantum state teleportation of a macroscopic atomic ensemble using a pair of quantum-correlated atomic ensembles. We show how to prepare this pair of ensembles using quasiperfect quantum state transfer processes between light and atoms. Our protocol relies on optical joint measurements of the atomic ensemble states and magnetic feedback reconstruction.
Quantum light-matter interfaces, based upon ensembles of cold atoms or other quantum emitters, are a vital platform for diverse quantum technologies and the exploration of fundamental quantum phenomena. Most of our understanding and modeling of such systems are based upon macroscopic theories, wherein the atoms are treated as a smooth, quantum polarizable medium. Although it is known that such approaches ignore a number of microscopic details, such as the granularity of atoms, dipole-dipole interactions and multiple scattering of light, the consequences of such effects in practical settings are usually mixed with background macroscopic effects and difficult to quantify. In this work we demonstrate a time-domain method to measure microscopically-driven optical effects in a background-free fashion, by transiently suppressing the macroscopic dynamics. With the method, we reveal a microscopic dipolar dephasing mechanism that generally limits the lifetime of the optical spin-wave order in a random gas. Theoretically, we show the dephasing effect emerges from the strong resonant dipole interaction between close-by atomic pairs.
We simultaneously trap ultracold lithium and cesium atoms in an optical dipole trap formed by the focus of a CO$_2$ laser and study the exchange of thermal energy between the gases. The cesium gas, which is optically cooled to $20 mu$K, efficiently decreases the temperature of the lithium gas through sympathetic cooling. The measured cross section for thermalizing $^{133}$Cs-$^7$Li collisions is $8 times 10^{-12}$ cm$^2$, for both species in their lowest hyperfine ground state. Besides thermalization, we observe evaporation of lithium purely through elastic cesium-lithium collisions (sympathetic evaporation).