Do you want to publish a course? Click here

On the stability of boundary equilibria in Filippov systems

96   0   0.0 ( 0 )
 Added by David Simpson
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The leading-order approximation to a Filippov system $f$ about a generic boundary equilibrium $x^*$ is a system $F$ that is affine one side of the boundary and constant on the other side. We prove $x^*$ is exponentially stable for $f$ if and only if it is exponentially stable for $F$ when the constant component of $F$ is not tangent to the boundary. We then show exponential stability and asymptotic stability are in fact equivalent for $F$. We also show exponential stability is preserved under small perturbations to the pieces of $F$. Such results are well known for homogeneous systems. To prove the results here additional techniques are required because the two components of $F$ have different degrees of homogeneity. The primary function of the results is to reduce the problem of the stability of $x^*$ from the general Filippov system $f$ to the simpler system $F$. Yet in general this problem remains difficult. We provide a four-dimensional example of $F$ for which orbits appear to converge to $x^*$ in a chaotic fashion. By utilising the presence of both homogeneity and sliding motion the dynamics of $F$ can in this case be reduced to the combination of a one-dimensional return map and a scalar function.



rate research

Read More

102 - David J.W. Simpson 2018
This paper concerns two-dimensional Filippov systems --- ordinary differential equations that are discontinuous on one-dimensional switching manifolds. In the situation that a stable focus transitions to an unstable focus by colliding with a switching manifold as parameters are varied, a simple sufficient condition for a unique local limit cycle to be created is established. If this condition is violated, three nested limit cycles may be created simultaneously. The result is achieved by constructing a Poincare map and generalising analytical arguments that have been employed for continuous systems. Necessary and sufficient conditions for the existence of pseudo-equilibria (equilibria of sliding motion on the switching manifold) are also determined. For simplicity only piecewise-linear systems are considered.
We describe the linear and nonlinear stability and instability of certain symmetric configurations of point vortices on the sphere forming relative equilibria. These configurations consist of one or two rings, and a ring with one or two polar vortices. Such configurations have dihedral symmetry, and the symmetry is used to block diagonalize the relevant matrices, to distinguish the subspaces on which their eigenvalues need to be calculated, and also to describe the bifurcations that occur as eigenvalues pass through zero.
We develop a general stability theory for equilibrium points of Poisson dynamical systems and relative equilibria of Hamiltonian systems with symmetries, including several generalisations of the Energy-Casimir and Energy-Momentum methods. Using a topological generalisation of Lyapunovs result that an extremal critical point of a conserved quantity is stable, we show that a Poisson equilibrium is stable if it is an isolated point in the intersection of a level set of a conserved function with a subset of the phase space that is related to the non-Hausdorff nature of the symplectic leaf space at that point. This criterion is applied to generalise the Energy-Momentum method to Hamiltonian systems which are invariant under non-compact symmetry groups for which the coadjoint orbit space is not Hausdorff. We also show that a $G$-stable relative equilibrium satisfies the stronger condition of being $A$-stable, where $A$ is a specific group-theoretically defined subset of $G$ which contains the momentum isotropy subgroup of the relative equilibrium.
In this paper we investigate equilibria of continuous differential equation models of network dynamics. The motivation comes from gene regulatory networks where each directed edge represents either down- or up-regulation, and is modeled by a sigmoidal nonlinear function. We show that the existence and stability of equilibria of a sigmoidal system is determined by a combinatorial analysis of the limiting switching system with piece-wise constant non-linearities. In addition, we describe a local decomposition of a switching system into a product of simpler cyclic feedback systems, where the cycles in each decomposition correspond to a particular subset of network loops.
This work introduces a novel approach to study properties of positive equilibria of a chemical reaction network $mathscr{N}$ endowed with Hill-type kinetics $K$, called a Hill-type kinetic (HTK) system $left(mathscr{N},Kright)$, including their multiplicity and concentration robustness in a species. We associate a unique positive linear combination of power-law kinetic systems called poly-PL kinetic (PYK) system $left( {mathscr{N},{K_text{PY}}} right)$ to the given HTK system. The associated system has the key property that its equilibria sets coincide with those of the Hill-type system, i.e., ${E_ + }left( {mathscr{N},K} right) = {E_ + }left( {mathscr{N},{K_text{PY}}} right)$ and ${Z_ + }left( {mathscr{N},K} right) = {Z_ + }left( {mathscr{N},{K_text{PY}}} right)$. This allows us to identify two novel subsets of the Hill-type kinetics, called PL-equilibrated and PL-complex balanced kinetics, to which recent results on absolute concentration robustness (ACR) of species and complex balancing at positive equilibria of power-law (PL) kinetic systems can be applied. Our main results also include the Shinar-Feinberg ACR Theorem for PL-equilibrated HT-RDK systems (i.e., subset of complex factorizable HTK systems), which establishes a foundation for the analysis of ACR in HTK systems, and the extension of the results of Muller and Regensburger on generalized mass action systems to PL-complex balanced HT-RDK systems. In addition, we derive the theory of balanced concentration robustness (BCR) in an analogous manner to ACR for PL-equilibrated systems. Finally, we provide further extensions of our results to a more general class of kinetics, which includes quotients of poly-PL functions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا