Buckling bars in nearly face-on galaxies observed with MaNGA


Abstract in English

Over half of disk galaxies are barred, yet the mechanisms for bar formation and the life-time of bar buckling remain poorly understood. In simulations, a thin bar undergoes a rapid (<1 Gyr) event called buckling, during which the inner part of the bar is asymmetrically bent out of the galaxy plane and eventually thickens, developing a peanut/X-shaped profile when viewed side-on. Through analyzing stellar kinematics of N-body model snapshots of a galaxy before, during, and after the buckling phase, we confirm a distinct quadrupolar pattern of out-of-plane stellar velocities in nearly face-on galaxies. This kinematic signature of buckling allows us to identify five candidates of currently buckling bars among 434 barred galaxies in the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) Survey, an integral field unit (IFU) spectroscopic survey that measures the composition and kinematic structure of nearby galaxies. The frequency of buckling events detected is consistent with the 0.5-1 Gyr timescale predicted by simulations. The five candidates we present more than double the total number of candidate buckling bars, and are the only ones found using the kinematic signature.

Download